Show simple item record

Characterizing natural hydrogel for reconstruction of three‐dimensional lymphoid stromal network to model T‐cell interactions

dc.contributor.authorKim, Jiwonen_US
dc.contributor.authorWu, Bimingen_US
dc.contributor.authorNiedzielski, Steven M.en_US
dc.contributor.authorHill, Matthew T.en_US
dc.contributor.authorColeman, Rhima M.en_US
dc.contributor.authorOno, Akiraen_US
dc.contributor.authorShikanov, Ariellaen_US
dc.date.accessioned2015-07-01T20:56:56Z
dc.date.available2016-09-06T15:43:59Zen
dc.date.issued2015-08en_US
dc.identifier.citationKim, Jiwon; Wu, Biming; Niedzielski, Steven M.; Hill, Matthew T.; Coleman, Rhima M.; Ono, Akira; Shikanov, Ariella (2015). "Characterizing natural hydrogel for reconstruction of three‐dimensional lymphoid stromal network to model T‐cell interactions." Journal of Biomedical Materials Research Part A 103(8): 2701-2710.en_US
dc.identifier.issn1549-3296en_US
dc.identifier.issn1552-4965en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112007
dc.description.abstractHydrogels have been used in regenerative medicine because they provide a three‐dimensional environment similar to soft tissues, allow diffusion of nutrients, present critical biological signals, and degrade via endogenous enzymatic mechanisms. Herein, we developed in vitro system mimicking cell–cell and cell–matrix interactions in secondary lymphoid organs (SLOs). Existing in vitro culture systems cannot accurately represent the complex interactions happening between T‐cells and stromal cells in immune response. To model T‐cell interaction in SLOs in vitro, we encapsulated stromal cells in fibrin, collagen, or fibrin–collagen hydrogels and studied how different mechanical and biological properties affect stromal network formation. Overall, fibrin supplemented with aprotinin was superior to collagen and fibrin–collagen in terms of network formation and promotion of T‐cell penetration. After 8 days of culture, stromal networks formed through branching and joining with other adjacent cell populations. T‐cells added to the newly formed stromal networks migrated and attached to stromal cells, similar to the T‐cell zones of the lymph nodes in vivo. Our results suggest that the constructed three‐dimensional lymphoid stromal network can mimic the in vivo environment and allow the modeling of T‐cell interaction in SLOs. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2701–2710, 2015.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherstromal networken_US
dc.subject.othernatural hydrogelsen_US
dc.subject.otherthree‐dimensional (3D) cell cultureen_US
dc.subject.otherfibrinen_US
dc.subject.othersecondary lymphoid organsen_US
dc.titleCharacterizing natural hydrogel for reconstruction of three‐dimensional lymphoid stromal network to model T‐cell interactionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112007/1/jbma35409.pdf
dc.identifier.doi10.1002/jbm.a.35409en_US
dc.identifier.sourceJournal of Biomedical Materials Research Part Aen_US
dc.identifier.citedreferenceCrisa L, Cirulli V, Ellisman MH, Ishii JK, Elices MJ, Salomon DR. Cell adhesion and migration are regulated at distinct stages of thymic T cell development: The roles of fibronectin, VLA4, and VLA5. J Exp Med 1996; 184: 215 – 228.en_US
dc.identifier.citedreferenceGretz JE, Anderson AO, Shaw S. Cords, channels, corridors and conduits: Critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol Rev 1997; 156: 11 – 24.en_US
dc.identifier.citedreferenceBajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 2006; 25: 989 – 1001.en_US
dc.identifier.citedreferenceYamada Y, Kleinman HK. Functional domains of cell adhesion molecules. Curr Opin Cell Biol 1992; 4: 819 – 823.en_US
dc.identifier.citedreferenceKaibara M, Fukada E. Effect of temperature on dynamic viscoelasticity during the clotting reaction of fibrin. Biochim Biophys Acta 1977; 499: 352 – 361.en_US
dc.identifier.citedreferenceBlomback B, Carlsson K, Fatah K, Hessel B, Procyk R. Fibrin in human plasma: Gel architectures governed by rate and nature of fibrinogen activation. Thromb Res 1994; 75: 521 – 538.en_US
dc.identifier.citedreferenceMosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost 2005; 3: 1894 – 1904.en_US
dc.identifier.citedreferenceMcGuigan AP, Bruzewicz DA, Glavan A, Butte MJ, Whitesides GM. Cell encapsulation in sub‐mm sized gel modules using replica molding. PLoS One 2008; 3: e2258.en_US
dc.identifier.citedreferenceLee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm 2001; 221: 1 – 22.en_US
dc.identifier.citedreferenceHesse E, Hefferan TE, Tarara JE, Haasper C, Meller R, Krettek C, Lu L, Yaszemski MJ. Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. J Biomed Mater Res A 2010; 94: 442 – 449.en_US
dc.identifier.citedreferenceNaito H, Yoshimura M, Mizuno T, Takasawa S, Tojo T, Taniguchi S. The advantages of three‐dimensional culture in a collagen hydrogel for stem cell differentiation. J Biomed Mater Res A 2013; 101: 2838 – 2845.en_US
dc.identifier.citedreferenceSigal A, Kim JT, Balazs AB, Dekel E, Mayo A, Milo R, Baltimore D. Cell‐to‐cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 2011; 477: 95 – 98.en_US
dc.identifier.citedreferenceHubner W, McNerney GP, Chen P, Dale BM, Gordon RE, Chuang FY, Li XD, Asmuth DM, Huser T, Chen BK. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 2009; 323: 1743 – 1747.en_US
dc.identifier.citedreferenceBaker BM, Chen CS. Deconstructing the third dimension: How 3D culture microenvironments alter cellular cues. J Cell Sci 2012; 125: 3015 – 3024.en_US
dc.identifier.citedreferenceSchmalstieg FC, Rudloff HE, Hillman GR, Anderson DC. Two‐dimensional and three‐dimensional movement of human polymorphonuclear leukocytes: Two fundamentally different mechanisms of locomotion [corrected]. J Leukoc Biol 1986; 40: 677 – 691.en_US
dc.identifier.citedreferenceMurooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, Tager AM, Luster AD, Mempel TR. HIV‐infected T cells are migratory vehicles for viral dissemination. Nature 2012; 490: 283 – 287.en_US
dc.identifier.citedreferenceSchor SL, Allen TD, Winn B. Lymphocyte migration into three‐dimensional collagen matrices: A quantitative study. J Cell Biol 1983; 96: 1089 – 1096.en_US
dc.identifier.citedreferenceLlewellyn GN, Hogue IB, Grover JR, Ono A. Nucleocapsid promotes localization of HIV‐1 gag to uropods that participate in virological synapses between T cells. PLoS Pathog 2010; 6: e1001167.en_US
dc.identifier.citedreferenceRao RR, Peterson AW, Ceccarelli J, Putnam AJ, Stegemann JP. Matrix composition regulates three‐dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis 2012; 15: 253 – 264.en_US
dc.identifier.citedreferenceRowe SL, Stegemann JP. Interpenetrating collagen‐fibrin composite matrices with varying protein contents and ratios. Biomacromolecules 2006; 7: 2942 – 2948.en_US
dc.identifier.citedreferenceLai VK, Lake SP, Frey CR, Tranquillo RT, Barocas VH. Mechanical behavior of collagen‐fibrin co‐gels reflects transition from series to parallel interactions with increasing collagen content. J Biomech Eng 2012; 134: 011004.en_US
dc.identifier.citedreferenceLewis JL, Johnson SL, Oegema TR Jr. Interfibrillar collagen bonding exists in matrix produced by chondrocytes in culture: Evidence by electron microscopy. Tissue Eng 2002; 8: 989 – 995. Dec;en_US
dc.identifier.citedreferenceHelm CL, Zisch A, Swartz MA. Engineered blood and lymphatic capillaries in 3‐D VEGF‐fibrin‐collagen matrices with interstitial flow. Biotechnol Bioeng 2007; 96: 167 – 176.en_US
dc.identifier.citedreferenceRoy P, Petroll WM, Chuong CJ, Cavanagh HD, Jester JV. Effect of cell migration on the maintenance of tension on a collagen matrix. Ann Biomed Eng 1999; 27: 721 – 730.en_US
dc.identifier.citedreferenceHaessler U, Pisano M, Wu M, Swartz MA. Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc Natl Acad Sci U S A 2011; 108: 5614 – 5619.en_US
dc.identifier.citedreferenceSchumann K, Lammermann T, Bruckner M, Legler DF, Polleux J, Spatz JP, Schuler G, Forster R, Lutz MB, Sorokin L, Sixt M. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 2010; 32: 703 – 713.en_US
dc.identifier.citedreferenceJunt T, Scandella E, Ludewig B. Form follows function: Lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol 2008; 8: 764 – 775.en_US
dc.identifier.citedreferenceMasopust D, Schenkel JM. The integration of T cell migration, differentiation and function. Nat Rev Immunol 2013; 13: 309 – 320.en_US
dc.identifier.citedreferenceRoozendaal R, Mebius RE. Stromal cell‐immune cell interactions. Annu Rev Immunol 2011; 29: 23 – 43.en_US
dc.identifier.citedreferenceRandall TD. Stromal cells put the brakes on T‐cell responses. Immunol Cell Biol 2012; 90: 469 – 470.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.