Show simple item record

Toward an internal gravity wave spectrum in global ocean models

dc.contributor.authorMüller, Malteen_US
dc.contributor.authorArbic, Brian K.en_US
dc.contributor.authorRichman, James G.en_US
dc.contributor.authorShriver, Jay F.en_US
dc.contributor.authorKunze, Eric L.en_US
dc.contributor.authorScott, Robert B.en_US
dc.contributor.authorWallcraft, Alan J.en_US
dc.contributor.authorZamudio, Luisen_US
dc.date.accessioned2015-07-01T20:56:57Z
dc.date.available2016-07-05T17:27:59Zen
dc.date.issued2015-05-16en_US
dc.identifier.citationMüller, Malte ; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Kunze, Eric L.; Scott, Robert B.; Wallcraft, Alan J.; Zamudio, Luis (2015). "Toward an internal gravity wave spectrum in global ocean models." Geophysical Research Letters 42(9): 3474-3481.en_US
dc.identifier.issn0094-8276en_US
dc.identifier.issn1944-8007en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112009
dc.description.abstractHigh‐resolution global ocean models forced by atmospheric fields and tides are beginning to display realistic internal gravity wave spectra, especially as model resolution increases. This paper examines internal waves in global simulations with 0.08° and 0.04° (~8 and 4 km) horizontal resolutions, respectively. Frequency spectra of internal wave horizontal kinetic energy in the North Pacific lie closer to observations in the 0.04° simulation than in the 0.08° simulation. The horizontal wave number and frequency (K‐ω) kinetic energy spectra contain peaks in the semidiurnal tidal band and near‐inertial band, along with a broadband frequency continuum aligned along the linear dispersion relations of low‐vertical‐mode internal waves. Spectral kinetic energy transfers describe the rate at which nonlinear mechanisms remove or supply kinetic energy in specific K‐ω ranges. Energy is transferred out of low‐mode inertial and semidiurnal internal waves into a broad continuum of higher‐frequency and higher‐wave number internal waves.Key PointsRepresentation of internal gravity wave spectra in OGCMsSpectral internal gravity wave kinetic energy and nonlinear energy transfersNonlinear internal wave‐wave interactions in the wave number frequency domainen_US
dc.publisherThe MIT Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherGarrett Munk spectrumen_US
dc.subject.othernonlinear interactionsen_US
dc.subject.otherinternal tidesen_US
dc.subject.otherinternal wavesen_US
dc.subject.otherglobal ocean modelsen_US
dc.titleToward an internal gravity wave spectrum in global ocean modelsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112009/1/grl52909.pdf
dc.identifier.doi10.1002/2015GL063365en_US
dc.identifier.sourceGeophysical Research Lettersen_US
dc.identifier.citedreferenceMunk, W., and C. Wunsch ( 1998 ), Abyssal recipes II: Energetics of tidal and wind mixing, Deep Sea Res., Part I, 45, 1977 – 2010.en_US
dc.identifier.citedreferenceArbic, B. K., J. G. Richman, J. F. Shriver, P. G. Timko, E. J. Metzge, and A. J. Wallcraft ( 2012a ), Global modeling of internal tides within an eddying ocean general circulation model, Oceanography, 25, 20 – 29.en_US
dc.identifier.citedreferenceArbic, B. K., R. B. Scott, G. R. Flierl, A. J. Morten, J. G. Richman, and J. Shriver ( 2012b ), Nonlinear cascades of surface oceanic geostrophic kinetic energy in the frequency domain, J. Phys. Oceanogr., 42, 1577 – 1600.en_US
dc.identifier.citedreferenceArbic, B. K., M. Müller, J. G. Richman, J. F. Shriver, A. J. Morten, R. B. Scott, G. Sérazin, and T. Penduff ( 2014 ), Geostrophic turbulence in the frequency‐wave number domain: Eddy‐driven low‐frequency variability, J. Phys. Oceanogr., 44, 2050 – 2069.en_US
dc.identifier.citedreferenceCairns, J. L., and G. O. Williams ( 1976 ), Internal wave observations from a midwater float, 2, J. Geophys. Res., 81 ( 12 ), 1943 – 1950, doi: 10.1029/JC081i012p01943.en_US
dc.identifier.citedreferenceChassignet, E. P., et al. ( 2009 ), US GODAE: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM), Oceanography, 22, 64 – 75.en_US
dc.identifier.citedreferenceD'Asaro, E. A. ( 1984 ), Wind forced internal waves in the North Pacific and Sargasso Sea, J. Phys. Oceanogr., 14, 781 – 794.en_US
dc.identifier.citedreferenceD'Asaro, E. A. ( 1985 ), The energy flux from the wind to near‐inertial motions in the surface mixed layer, J. Phys. Oceanogr., 15, 1043 – 1059.en_US
dc.identifier.citedreferenceEgbert, G. D., A. F. Bennett, and M. G. G. Foreman ( 1994 ), TOPEX/POSEIDON tides estimated using a global inverse model, J. Geophys. Res., 99 ( C12 ), 24,821 – 24,852, doi: 10.1029/94JC01894.en_US
dc.identifier.citedreferenceGarrett, C., and E. Kunze ( 2007 ), Internal tide generation in the deep ocean, Annu. Rev. Fluid Mech., 39, 57 – 87.en_US
dc.identifier.citedreferenceGarrett, C. J. R., and W. H. Munk ( 1975 ), Space‐time scales of internal waves. A progress report, J. Geophys. Res., 80, 291 – 297, doi: 10.1029/JC080i003p00291.en_US
dc.identifier.citedreferenceMacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak ( 2013 ), Parametric subharmonic instability of the internal tide at 29°N, J. Phys. Oceanogr., 43, 17 – 28.en_US
dc.identifier.citedreferenceMcClean, J. L., A. J. Semtner, and V. Zlotnicki ( 1997 ), Comparisons of mesoscale variability in the Semtner‐Chervin 1/4° model, the Los Alamos Parallel Ocean Program 1/6° model, and TOPEX/POSEIDON data, J. Geophys. Res., 102 ( C11 ), 25,203 – 25,226, doi: 10.1029/97JC01222.en_US
dc.identifier.citedreferenceMcComas, C. H., and F. P. Bretherton ( 1977 ), Resonant interaction of oceanic internal waves, J. Geophys. Res., 82 ( 9 ), 1397 – 1412, doi: 10.1029/JC082i009p01397.en_US
dc.identifier.citedreferenceMüller, M., J. Y. Cherniawsky, M. G. G. Foreman, and J.‐S. von Storch ( 2012 ), Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling, Geophys. Res. Lett., 39, L19607, doi: 10.1029/2012GL053320.en_US
dc.identifier.citedreferenceMüller, P., G. Holloway, F. Henyey, and N. Pomphrey ( 1986 ), Nonlinear interactions among internal gravity waves, Rev. Geophys, 24 ( 3 ), 493 – 536, doi: 10.1029/RG024i003p00493.en_US
dc.identifier.citedreferenceMunk, W. ( 1981 ), Internal waves and small‐scale processes, in Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, edited by B. A. Warren and C. Wunsch, pp. 264 – 291, The MIT Press, Cambridge and London.en_US
dc.identifier.citedreferencePolzin, K. ( 2004 ), Heuristic description of internal wave dynamics, J. Phys. Oceanogr., 34, 214 – 230.en_US
dc.identifier.citedreferencePolzin, K. L., A. C. Naveira Garabato, T. N. Huussen, B. M. Sloyan, and S. Waterman ( 2014 ), Fine‐scale parameterizations of turbulent dissipation, J. Geophys. Res. Oceans, 119, 2169 – 9291, doi: 10.1002/2013JC008979.en_US
dc.identifier.citedreferenceSchmitz, W. J., Jr. ( 1988 ), Exploration of the eddy field in the midlatitude North Pacific, J. Phys. Oceanogr., 18, 459 – 468.en_US
dc.identifier.citedreferenceScott, R. B., and F. Wang ( 2005 ), Direct evidence of an inverse kinetic energy cascade from satellite altimetry, J. Phys. Oceanogr., 35, 1650 – 1666.en_US
dc.identifier.citedreferenceShriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko ( 2012 ), An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model, J. Geophys. Res., 117, C10024, doi: 10.1029/2012JC008170.en_US
dc.identifier.citedreferenceSilverthorne, K. E., and J. M. Toole ( 2009 ), Seasonal kinetic energy variability of near‐inertial motions, J. Phys. Oceanogr., 39, 1035 – 1049.en_US
dc.identifier.citedreferenceSimmons, H. L., and M. H. Alford ( 2012 ), Simulating the long‐range swell of internal waves generated by ocean storms, Oceanography, 25, 30 – 41.en_US
dc.identifier.citedreferenceSugiyama, Y., Y. Niwa, and T. Hibiya ( 2009 ), Numerically reproduced internal wave spectra in the deep ocean, J. Geophys. Res., 36, L07601, doi: 10.1029/2008GL036825.en_US
dc.identifier.citedreferenceSun, O. M., and R. Pinkel ( 2013 ), Subharmonic energy transfer from the semidiurnal internal tide to near‐diurnal motions over Kaena Ridge, Hawaii, J. Phys. Oceanogr., 43, 766 – 789.en_US
dc.identifier.citedreferenceTimko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft ( 2013 ), Skill testing a three‐dimensional global tide model to historical current meter records, J. Geophys. Res. Oceans, 118, 6914 – 6933, doi: 10.1002/2013JC009071.en_US
dc.identifier.citedreferenceArbic, B. K., A. J. Wallcraft, and E. J. Metzger ( 2010 ), Concurrent simulation of the eddying general circulation and tides in a global ocean model, Ocean Model., 32, 175 – 187.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.