Show simple item record

Interpreting ~1 Hz magnetic compressional waves in Mercury's inner magnetosphere in terms of propagating ion‐Bernstein waves

dc.contributor.authorBoardsen, S. A.en_US
dc.contributor.authorKim, E.‐h.en_US
dc.contributor.authorRaines, J. M.en_US
dc.contributor.authorSlavin, J. A.en_US
dc.contributor.authorGershman, D. J.en_US
dc.contributor.authorAnderson, B. J.en_US
dc.contributor.authorKorth, H.en_US
dc.contributor.authorSundberg, T.en_US
dc.contributor.authorSchriver, D.en_US
dc.contributor.authorTravnicek, P.en_US
dc.date.accessioned2015-08-05T16:46:40Z
dc.date.available2016-07-05T17:27:57Zen
dc.date.issued2015-06en_US
dc.identifier.citationBoardsen, S. A.; Kim, E.‐h. ; Raines, J. M.; Slavin, J. A.; Gershman, D. J.; Anderson, B. J.; Korth, H.; Sundberg, T.; Schriver, D.; Travnicek, P. (2015). "Interpreting ~1â Hz magnetic compressional waves in Mercury's inner magnetosphere in terms of propagating ionâ Bernstein waves." Journal of Geophysical Research: Space Physics 120(6): 4213-4228.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112180
dc.description.abstractWe show that ~1 Hz magnetic compressional waves observed in Mercury's inner magnetosphere could be interpreted as ion‐Bernstein waves in a moderate proton beta ~0.1 plasma. An observation of a proton distribution with a large planetary loss cone is presented, and we show that this type of distribution is highly unstable to the generation of ion‐Bernstein waves with low magnetic compression. Ray tracing shows that as these waves propagate back and forth about the magnetic equator; they cycle between a state of low and high magnetic compression. The group velocity decreases during the high‐compression state leading to a pileup of compressional wave energy, which could explain the observed dominance of the highly compressional waves. This bimodal nature is due to the complexity of the index of refraction surface in a warm plasma whose upper branch has high growth rate with low compression, and its lower branch has low growth/damping rate with strong compression. Two different cycles are found: one where the compression maximum occurs at the magnetic equator and one where the compression maximum straddles the magnetic equator. The later cycle could explain observations where the maximum in compression straddles the equator. Ray tracing shows that this mode is confined within ±12° magnetic latitude which can account for the bulk of the observations. We show that the Doppler shift can account for the difference between the observed and model wave frequency, if the wave vector direction is in opposition to the plasma flow direction. We note that the Wentzel‐Kramers‐Brillouin approximation breaks down during the pileup of compressional energy and that a study involving full wave solutions is required.Key PointsThe ion‐Bernstein (IB) mode is highly unstable to proton loss cones at MercuryThe IB mode can become highly compressional as it propagatesRay tracing of the IB mode predicts compression peaking the off equatoren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherCambridge Univ. Pressen_US
dc.subject.otherplanetary loss cone instabilityen_US
dc.subject.otherray tracingen_US
dc.subject.otherion‐Bernstein modeen_US
dc.subject.otherMercury's magnetosphereen_US
dc.titleInterpreting ~1 Hz magnetic compressional waves in Mercury's inner magnetosphere in terms of propagating ion‐Bernstein wavesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112180/1/jgra51808.pdf
dc.identifier.doi10.1002/2014JA020910en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferencePerraut, S., A. Roux, P. Robert, R. Gendrin, J.‐A. Sauvaud, J.‐M. Bosqued, G. Kremser, and A. Korth ( 1982 ), A systematic study of ULF waves above FH+ from GEOS 1 and 2 measurements and their relationships with proton ring distributions, J. Geophys. Res., 87 ( A8 ), 6219 – 6236, doi: 10.1029/JA087iA08p06219.en_US
dc.identifier.citedreferenceKim, E.‐H., J. R. Johnson, and D.‐H. Lee ( 2008 ), Resonant absorption of ULF waves at Mercury's magnetosphere, J. Geophys. Res., 113, A11207, doi: 10.1029/2008JA013310.en_US
dc.identifier.citedreferenceKim, E.‐H., J. R. Johnson, and K.‐D. Lee ( 2011 ), ULF wave absorption at Mercury, Geophys. Res. Lett., 38, L16111, doi: 10.1029/2011GL048621.en_US
dc.identifier.citedreferenceKim, E.‐H., J. R. Johnson, K.‐D. Lee, and Y. S. Pyo ( 2013 ), Field‐line resonance structures in Mercury's multi‐ion magnetosphere, Earth Planets Space, 65, 447 – 451, doi: 10.5047/eps.2012.08.004.en_US
dc.identifier.citedreferenceKim, E.‐H., J. R. Johnson, E. Valeo, and C. K. Phillips ( 2015 ), Global modeling of ULF waves at Mercury, PPPL Tech. Rep., PPPL‐5107. [Available at http://www.pppl.gov/research/pppl‐technical‐reports.]en_US
dc.identifier.citedreferenceKlimushkin, D. Y., P. N. Mager, and K.‐H. Glassmeier ( 2006 ), Axisymmetric Alfvén resonances in a multi‐component plasma at finite ion gyrofrequency, Ann. Geophys., 24, 1077 – 1084, doi: 10.5194/angeo-24-1077-2006.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, C. L. Johnson, M. E. Purucker, R. M. Winslow, S. C. Solomon, and R. L. McNutt Jr. ( 2011 ), Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, Geophys. Res. Lett., 38, L22201, doi: 10.1029/2011GL049451.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, D. J. Gershman, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, S. C. Solomon, and R. L. McNutt Jr. ( 2014 ), Plasma distribution in Mercury's magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations, J. Geophys. Res. Space Physics, 119, 2917 – 2932, doi: 10.1002/2013JA019567.en_US
dc.identifier.citedreferenceMenietti, J. D., O. Santolik, J. D. Scudder, J. S. Pickett, and D. A. Gurnett ( 2002 ), Electrostatic electron cyclotron waves generated by low‐energy electron beams, J. Geophys. Res., 107 ( A10 ), 1285, doi: 10.1029/2001JA009223.en_US
dc.identifier.citedreferenceOgilvie, K. W., J. D. Scudder, V. M. Vasyliunas, R. E. Hartle, and G. L. Siscoe ( 1977 ), Observations at the planet Mercury by the plasma electron instrument: Mariner 10, J. Geophys. Res., 82, 1807 – 1824, doi: 10.1029/JA082i013p01807.en_US
dc.identifier.citedreferenceOmidi, N., R. Thorne, and J. Bortnik ( 2011 ), Hybrid simulations of EMIC waves in a dipolar magnetic field, J. Geophys. Res., 116, A09231, doi: 10.1029/2011JA016511.en_US
dc.identifier.citedreferenceOmidi, N., J. Bortnik, R. Thorne, and L. Chen ( 2013 ), Impact of cold O+ ions on the generation and evolution of EMIC waves, J. Geophys. Res. Space Physics, 118, 434 – 445, doi: 10.1029/2012JA018319.en_US
dc.identifier.citedreferenceOthmer, C., K. H. Glassmeier, and R. Cramm ( 1999 ), Concerning field line resonances in Mercury's magnetosphere, J. Geophys. Res., 104, 10,369 – 10,378, doi: 10.1029/1999JA900009.en_US
dc.identifier.citedreferenceRaines, J. M., J. A. Slavin, T. H. Zurbuchen, G. Gloeckler, B. J. Anderson, D. N. Baker, S. M. Krimigis, H. Korth, and R. L. McNutt Jr. ( 2011 ), MESSENGER observations of the plasma environment near Mercury, Planet. Space Sci., 59, 2004 – 2015, doi: 10.1016/j.pss.2011.02.004.en_US
dc.identifier.citedreferenceRaines, J. M., et al. ( 2013 ), Distribution and compositional variations of plasma ions in Mercury's space environment: The first three Mercury years of MESSENGER observations, J. Geophys. Res. Space Physics, 118, 1604 – 1619, doi: 10.1029/2012JA018073.en_US
dc.identifier.citedreferenceRönnmark, K. ( 1982 ), WHAMPS: Waves in homogeneous, anisotropic multicomponent plasmas, Report 179, Kiruna Geophys. Inst., Kiruna, Sweden.en_US
dc.identifier.citedreferenceRönnmark, K. ( 1983a ), Computation of the dielectric tensor of a Maxwellian plasma, Plasma Phys., 25, 699, doi: 10.1088/0032-1028/25/6/007.en_US
dc.identifier.citedreferenceRönnmark, K. ( 1983b ), Emission of myriametric radiation by coalescence of upper hybrid waves with low‐frequency waves, Ann. Geophys., 1, 187.en_US
dc.identifier.citedreferenceRönnmark, K. ( 1984 ), Ray tracing in dissipative media, Ann. Geophys. (ISSN 0755–0685), 2, 57 – 60.en_US
dc.identifier.citedreferenceRönnmark, K., and M. André ( 1991 ), Convection of ion cyclotron waves to ion‐heating regions, J. Geophys. Res., 96 ( A10 ), 17,573 – 17,579, doi: 10.1029/91JA01793.en_US
dc.identifier.citedreferenceRussell, C. T. ( 1989 ), ULF waves in the Mercury magnetosphere, Geophys. Res. Lett., 16, 1253 – 1256, doi: 10.1029/GL016i011p01253.en_US
dc.identifier.citedreferenceSchmidt, G. ( 1979 ), Physics o f High Temperature Plasmas, Academic, San Diego, Calif.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2008 ), Mercury's magnetosphere after MESSENGER's first flyby, Science, 321, 85 – 89, doi: 10.1126/science.1159040.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury's magnetosphere, Science, 324, 606 – 610, doi: 10.1126/science.1172011.en_US
dc.identifier.citedreferenceSuchy, K. ( 1981 ), Real Hamilton equations of geometric optics for media with moderate absorption, Radio Sci., 16, 1179, doi: 10.1029/RS016i006p01179.en_US
dc.identifier.citedreferenceWang, C.‐P., M. Gkioulidou, L. R. Lyons, and V. Angelopoulos ( 2012 ), Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet, J. Geophys. Res., 117, A08215, doi: 10.1029/2012JA017658.en_US
dc.identifier.citedreferenceWhitman, G. B. ( 1999 ), Linear and Nonlinear Waves, Wiley, New York.en_US
dc.identifier.citedreferenceWinske, D., and N. Omidi ( 1993 ), Hybrid codes: Methods and applications, in Computer Space Plasma Physics: Simulation Techniques and Software, edited by H. Matsumoto and Y. Omura, 103 pp., Terra Sci, Tokyo.en_US
dc.identifier.citedreferenceWu, S., R. E. Denton, and W. Li ( 2013 ), Effects of cold electron density on the whistler anisotropy instability, J. Geophys. Res. Space Physics, 118, 765 – 773, doi: 10.1029/2012JA018402.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450, doi: 10.1007/s11214-007-9246-7.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, H. Korth, M. E. Purucker, C. L. Johnson, J. A. Slavin, S. C. Solomon, and R. L. McNutt Jr. ( 2008 ), The structure of Mercury's magnetic field from MESSENGER's first flyby, Science, 321, 82 – 85, doi: 10.1126/science.1159081.en_US
dc.identifier.citedreferenceAnderson, B. J., et al. ( 2010 ), The magnetic field of Mercury, Space Sci. Rev., 152, 307 – 339, doi: 10.1007/s11214-009-9544-3.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen ( 2011 ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859 – 1862, doi: 10.1126/science.1211001.en_US
dc.identifier.citedreferenceAndré, M. ( 1985 ), Dispersion surfaces, J. Plasma Phys., 33, 1 – 19, doi: 10.1017/S0022377800002270.en_US
dc.identifier.citedreferenceAndré, M. ( 1986 ), Electrostatic ion waves generated by ion loss‐cone distributions in the magnetosphere, Ann. Geophys., 4, 241 – 246.en_US
dc.identifier.citedreferenceAndré, M., M. Temerin, and D. Gorney ( 1986 ), Resonant generation of ion waves on auroral field lines by positive slopes in ion velocity space, J. Geophys. Res., 91 ( A3 ), 3145 – 3151, doi: 10.1029/JA091iA03p03145.en_US
dc.identifier.citedreferenceBaumjohann, W., G. Paschmann, and C. A. Cattell ( 1989 ), Average plasma properties in the central plasma sheet, J. Geophys. Res., 94, 6597, doi: 10.1029/JA094iA06p06597.en_US
dc.identifier.citedreferenceBoardsen, S. A., D. A. Gurnett, and W. K. Peterson ( 1990 ), Double‐peaked electrostatic ion cyclotron harmonic waves, J. Geophys. Res., 95 ( A7 ), 10,591 – 10,598, doi: 10.1029/JA095iA07p10591.en_US
dc.identifier.citedreferenceBoardsen, S. A., D. L. Gallagher, D. A. Gurnett, W. K. Peterson, and J. L. Green ( 1992 ), Funnel‐shaped, low‐frequency equatorial waves, J. Geophys. Res., 97 ( A10 ), 14,967 – 14,976, doi: 10.1029/92JA00827.en_US
dc.identifier.citedreferenceBoardsen, S. A., B. J. Anderson, M. H. Acuña, J. A. Slavin, H. Korth, and S. C. Solomon ( 2009a ), Narrow‐band ultra‐low‐frequency wave observations by MESSENGER during its January 2008 flyby through Mercury's magnetosphere, Geophys. Res. Lett., 36, L01104, doi: 10.1029/2008GL036034.en_US
dc.identifier.citedreferenceBoardsen, S. A., J. A. Slavin, B. J. Anderson, H. Korth, and S. C. Solomon ( 2009b ), Comparison of ultra‐low‐frequency waves at Mercury under northward and southward IMF, Geophys. Res. Lett., 36, L18106, doi: 10.1029/2009GL039525.en_US
dc.identifier.citedreferenceBoardsen, S. A., J. A. Slavin, B. J. Anderson, H. Korth, D. Schriver, and S. C. Solomon ( 2012 ), Survey of coherent 1 Hz waves in Mercury's inner magnetosphere from MESSENGER observations, J. Geophys. Res., 117, A00M05, doi: 10.1029/2012JA017822.en_US
dc.identifier.citedreferenceDenton, R. E., M. J. Engebretson, A. Keiling, A. P. Walsh, S. P. Gary, P. M. E. Décréau, C. A. Cattell, and H. Rème ( 2010 ), Multiple harmonic ULF waves in the plasma sheet boundary layer: Instability analysis, J. Geophys. Res., 115, A12224, doi: 10.1029/2010JA015928.en_US
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1002/jgra.50123.en_US
dc.identifier.citedreferenceEngebretson, M. J., C. R. G. Kahlstorf, J. L. Posch, A. Keiling, A. P. Walsh, R. E. Denton, M. C. Broughton, C. J. Owen, K.‐H. Fornaçon, and H. Rème ( 2010 ), Multiple harmonic ULF waves in the plasma sheet boundary layer observed by Cluster, J. Geophys. Res., 115, A12225, doi: 10.1029/2010JA015929.en_US
dc.identifier.citedreferenceGary, S. P., K. Liu, D. Winske, and R. E. Denton ( 2010 ), Ion Bernstein instability in the terrestrial magnetosphere: Linear dispersion theory, J. Geophys. Res., 115, A12209, doi: 10.1029/2010JA015965.en_US
dc.identifier.citedreferenceGary, S. P., K. Liu, and D. Winske ( 2011 ), Bernstein instability driven by suprathermal protons in the ring current, J. Geophys. Res., 116, A08215, doi: 10.1029/2011JA016543.en_US
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2014 ), Ion kinetic properties in Mercury's premidnight plasma sheet, Geophys. Res. Lett., 41, 5740 – 5747, doi: 10.1002/2014GL060468.en_US
dc.identifier.citedreferenceGershman, D. J., J. M. Raines, J. A. Slavin, T. H. Zurbuchen, T. Sundberg, S. A. Boardsen, B. J. Anderson, H. Korth, and S. C. Solomon ( 2015 ), MESSENGER observations of multiscale Kelvin‐Helmholtz vortices at Mercury, J. Geophys. Res. Space Physics, 120, doi: 10.1002/2014JA020903.en_US
dc.identifier.citedreferenceGurnett, D. A., and A. Bhattacharjee ( 2005 ), Introduction to Plasma Physic With Space and Laboratory Applications, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceHu, Y., and R. E. Denton ( 2009 ), Two‐dimensional hybrid code simulation of electromagnetic ion cyclotron waves in a dipole magnetic field, J. Geophys. Res., 114, A12217, doi: 10.1029/2009JA014570.en_US
dc.identifier.citedreferenceHu, Y., R. E. Denton, and J. R. Johnson ( 2010 ), Two‐dimensional hybrid code simulation of electromagnetic ion cyclotron waves of multi‐ion plasmas in a dipole magnetic field, J. Geophys. Res., 115, A09218, doi: 10.1029/2009JA015158.en_US
dc.identifier.citedreferenceJanhunen, P., A. Olsson, A. Vaivads, and W. K. Peterson ( 2003 ), Generation of Bernstein waves by ion shell distributions in the auroral region, Ann. Geophys., 21, 881 – 891, doi: 10.5194/angeo-21-881-2003.en_US
dc.identifier.citedreferenceJoyce, C. J., C. W. Smith, P. A. Isenberg, S. P. Gary, N. Murphy, P. C. Gray, and L. F. Burlaga ( 2012 ), Observation of bernstein waves excited by newborn interstellar pickup ions in the solar wind, Astrophys. J., 745 ( 112 ), 8, doi: 10.1088/0004-637X/745/2/112.en_US
dc.identifier.citedreferenceKim, E.‐H., and D.‐H. Lee ( 2003 ), Resonant absorption of ULF waves near the ion cyclotron frequency: A simulation study, Geophys. Res. Lett., 30 ( 18 ), 2240, doi: 10.1029/2003GL017918.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.