Show simple item record

Activation of TLR‐4 to produce tumour necrosis factor‐α in neuropathic pain caused by paclitaxel

dc.contributor.authorWu, Z.en_US
dc.contributor.authorWang, S.en_US
dc.contributor.authorWu, I.en_US
dc.contributor.authorMata, M.en_US
dc.contributor.authorFink, D.J.en_US
dc.date.accessioned2015-08-05T16:46:42Z
dc.date.available2016-09-06T15:43:58Zen
dc.date.issued2015-08en_US
dc.identifier.citationWu, Z.; Wang, S.; Wu, I.; Mata, M.; Fink, D.J. (2015). "Activation of TLR‐4 to produce tumour necrosis factor‐α in neuropathic pain caused by paclitaxel." European Journal of Pain 19(7): 889-898.en_US
dc.identifier.issn1090-3801en_US
dc.identifier.issn1532-2149en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112183
dc.description.abstractBackgroundNeuropathic pain is a common complication of treatment with the anti‐neoplastic drug paclitaxel. Animal studies suggest neuroinflammation and transient receptor potential channels TRPA1 and TRPV4 are involved in the pathogenesis of pain in this condition. However, how neuroinflammation and TRPA1 and TRPV4 are linked to cause pain in paclitaxel‐treated animals is not known.MethodsPaclitaxel‐induced pain was modelled by IP injection of paclitaxel (16 mg/kg) once a week for 5 weeks. The role of toll‐like receptor 4 (TLR‐4) in tumour necrosis factor‐α (TNF‐α) production and the effect of TNF‐α on the expression of TRPA1 and TRPV4 were evaluated in vitro and in vivo. TNF‐α signalling in dorsal root ganglion (DRG) was blocked by expressing soluble TNF receptor I (TNFsR) from a herpes simplex virus (HSV)‐based vector (vTNFsR).ResultsPaclitaxel treatment increased the expression and release of TNF‐α in satellite glial cells and increased the expression of TRPA1 and TRPV4 in DRG neurons in animals. In vitro, paclitaxel enhanced the expression and release of TNF‐α in enriched primary satellite glial cells, an effect that was blocked by an inhibitor of TLR‐4. Direct application of TNF‐α to primary DRG neurons in culture up‐regulated the expression of TRPA1 and TRPV4. In vivo, vector‐mediated TNFsR release from DRG neurons reduced paclitaxel‐induced up‐regulation of TRPA1 and TRPV4 expression and prevented paclitaxel‐induced pain.ConclusionThese results suggest that paclitaxel activation of TLR‐4 to cause release of TNF‐α from satellite glial cells increases the expression of TRPA1 and TRPV4 in DRG neurons to cause neuropathic pain.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleActivation of TLR‐4 to produce tumour necrosis factor‐α in neuropathic pain caused by paclitaxelen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAnesthesiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112183/1/ejp613.pdf
dc.identifier.doi10.1002/ejp.613en_US
dc.identifier.sourceEuropean Journal of Painen_US
dc.identifier.citedreferencePittman, S.K., Gracias, N.G., Vasko, M.R., Fehrenbacher, J.C. ( 2014 ). Paclitaxel alters the evoked release of calcitonin gene‐related peptide from rat sensory neurons in culture. Exp Neurol 253, 146 – 153.en_US
dc.identifier.citedreferenceEngelmann, H., Novick, D., Wallach, D. ( 1990 ). Two tumor necrosis factor‐binding proteins purified from human urine. Evidence for immunological cross‐reactivity with cell surface tumor necrosis factor receptors. J Biol Chem 265, 1531 – 1536.en_US
dc.identifier.citedreferenceFlatters, S.J., Bennett, G.J. ( 2006 ). Studies of peripheral sensory nerves in paclitaxel‐induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction. Pain 122, 245 – 257.en_US
dc.identifier.citedreferenceHao, S., Mata, M., Glorioso, J.C., Fink, D.J. ( 2007 ). Gene transfer to interfere with TNFalpha signaling in neuropathic pain. Gene Ther 14, 1010 – 1016.en_US
dc.identifier.citedreferenceKawamoto, T., Ii, M., Kitazaki, T., Iizawa, Y., Kimura, H. ( 2008 ). TAK‐242 selectively suppresses Toll‐like receptor 4‐signaling mediated by the intracellular domain. Eur J Pharmacol 584, 40 – 48.en_US
dc.identifier.citedreferenceLedeboer, A., Jekich, B.M., Sloane, E.M., Mahoney, J.H., Langer, S.J., Milligan, E.D., Martin, D., Maier, S.F., Johnson, K.W., Leinwand, L.A., Chavez, R.A., Watkins, L.R. ( 2007 ). Intrathecal interleukin‐10 gene therapy attenuates paclitaxel‐induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav Immun 21, 686 – 698.en_US
dc.identifier.citedreferenceLi, Y., Zhang, H., Zhang, H., Kosturakis, A.K., Jawad, A.B., Dougherty, P.M. ( 2014 ). Toll‐like receptor 4 signaling contributes to paclitaxel‐induced peripheral neuropathy. J Pain 15, 712 – 725.en_US
dc.identifier.citedreferenceMaterazzi, S., Fusi, C., Benemei, S., Pedretti, P., Patacchini, R., Nilius, B., Prenen, J., Creminon, C., Geppetti, P., Nassini, R. ( 2012 ). TRPA1 and TRPV4 mediate paclitaxel‐induced peripheral neuropathy in mice via a glutathione‐sensitive mechanism. Pflugers Arch 463, 561 – 569.en_US
dc.identifier.citedreferenceMohan, M.J., Seaton, T., Mitchell, J., Howe, A., Blackburn, K., Burkhart, W., Moyer, M., Patel, I., Waitt, G.M., Becherer, J.D., Moss, M.L., Milla, M.E. ( 2002 ). The tumor necrosis factor‐alpha converting enzyme (TACE): A unique metalloproteinase with highly defined substrate selectivity. Biochemistry 41, 9462 – 9469.en_US
dc.identifier.citedreferencePeng, X.M., Zhou, Z.G., Glorioso, J.C., Fink, D.J., Mata, M. ( 2006 ). Tumor necrosis factor‐alpha contributes to below‐level neuropathic pain after spinal cord injury. Ann Neurol 59, 843 – 851.en_US
dc.identifier.citedreferenceSacerdote, P., Franchi, S., Trovato, A.E., Valsecchi, A.E., Panerai, A.E., Colleoni, M. ( 2008 ). Transient early expression of TNF‐alpha in sciatic nerve and dorsal root ganglia in a mouse model of painful peripheral neuropathy. Neurosci Lett 436, 210 – 213.en_US
dc.identifier.citedreferenceSchafers, M., Geis, C., Svensson, C.I., Luo, Z.D., Sommer, C. ( 2003 ). Selective increase of tumour necrosis factor‐alpha in injured and spared myelinated primary afferents after chronic constrictive injury of rat sciatic nerve. Eur J Neurosci 17, 791 – 804.en_US
dc.identifier.citedreferenceUstinova, E.E., Shurin, G.V., Gutkin, D.W., Shurin, M.R. ( 2013 ). The role of TLR4 in the paclitaxel effects on neuronal growth in vitro. PLoS ONE 8, e56886.en_US
dc.identifier.citedreferenceWu, F.X., Bian, J.J., Miao, X.R., Huang, S.D., Xu, X.W., Gong, D.J., Sun, Y.M., Lu, Z.J., Yu, W.F. ( 2010 ). Intrathecal siRNA against Toll‐like receptor 4 reduces nociception in a rat model of neuropathic pain. Int J Med Sci 7, 251 – 259.en_US
dc.identifier.citedreferenceWu, Z., Mata, M., Fink, D.J. ( 2011 ). Prevention of diabetic neuropathy by regulatable expression of HSV‐mediated erythropoietin. Mol Ther 19, 310 – 317.en_US
dc.identifier.citedreferenceWu, Z.Z., Chen, S.R., Pan, H.L. ( 2005 ). Transient receptor potential vanilloid type 1 activation down‐regulates voltage‐gated calcium channels through calcium‐dependent calcineurin in sensory neurons. J Biol Chem 280, 18142 – 18151.en_US
dc.identifier.citedreferenceYamakawa, I., Kojima, H., Terashima, T., Katagi, M., Oi, J., Urabe, H., Sanada, M., Kawai, H., Chan, L., Yasuda, H., Maegawa, H., Kimura, H. ( 2011 ). Inactivation of TNF‐alpha ameliorates diabetic neuropathy in mice. Am J Physiol Endocrinol Metab 301, E844 – E852.en_US
dc.identifier.citedreferenceZhou, Z., Peng, X., Hagshenas, J., Insolera, R., Fink, D.J., Mata, M. ( 2010 ). A novel cell‐cell signaling by microglial transmembrane TNF alpha with implications for neuropathic pain. Pain 151, 296 – 306.en_US
dc.identifier.citedreferenceAlessandri‐Haber, N., Dina, O.A., Yeh, J.J., Parada, C.A., Reichling, D.B., Levine, J.D. ( 2004 ). Transient receptor potential vanilloid 4 is essential in chemotherapy‐induced neuropathic pain in the rat. J Neurosci 24, 4444 – 4452.en_US
dc.identifier.citedreferenceArora, D.K., Cosgrave, A.S., Howard, M.R., Bubb, V., Quinn, J.P., Thippeswamy, T. ( 2007 ). Evidence of postnatal neurogenesis in dorsal root ganglion: Role of nitric oxide and neuronal restrictive silencer transcription factor. J Mol Neurosci 32, 97 – 107.en_US
dc.identifier.citedreferenceAuthier, N., Gillet, J.P., Fialip, J., Eschalier, A., Coudore, F. ( 2000 ). Description of a short‐term Taxol‐induced nociceptive neuropathy in rats. Brain Res 887, 239 – 249.en_US
dc.identifier.citedreferenceBarajon, I., Serrao, G., Arnaboldi, F., Opizzi, E., Ripamonti, G., Balsari, A., Rumio, C. ( 2009 ). Toll‐like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 57, 1013 – 1023.en_US
dc.identifier.citedreferenceBettoni, I., Comelli, F., Rossini, C., Granucci, F., Giagnoni, G., Peri, F., Costa, B. ( 2008 ). Glial TLR4 receptor as new target to treat neuropathic pain: Efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice. Glia 56, 1312 – 1319.en_US
dc.identifier.citedreferenceByrd‐Leifer, C.A., Block, E.F., Takeda, K., Akira, S., Ding, A. ( 2001 ). The role of MyD88 and TLR4 in the LPS‐mimetic activity of Taxol. Eur J Immunol 31, 2448 – 2457.en_US
dc.identifier.citedreferenceCata, J.P., Weng, H.R., Dougherty, P.M. ( 2008 ). The effects of thalidomide and minocycline on taxol‐induced hyperalgesia in rats. Brain Res 1229, 100 – 110.en_US
dc.identifier.citedreferenceCavaletti, G., Cavalletti, E., Oggioni, N., Sottani, C., Minoia, C., D'Incalci, M., Zucchetti, M., Marmiroli, P., Tredici, G. ( 2000 ). Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology 21, 389 – 393.en_US
dc.identifier.citedreferenceChattopadhyay, M., Mata, M., Fink, D.J. ( 2008 ). Continuous delta‐opioid receptor activation reduces neuronal voltage‐gated sodium channel (NaV1.7) levels through activation of protein kinase C in painful diabetic neuropathy. J Neurosci 28, 6652 – 6658.en_US
dc.identifier.citedreferenceChen, Y., Yang, C., Wang, Z.J. ( 2011 ). Proteinase‐activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel‐induced neuropathic pain. Neuroscience 193, 440 – 451.en_US
dc.identifier.citedreferenceDougherty, P.M., Cata, J.P., Cordella, J.V., Burton, A., Weng, H.R. ( 2004 ). Taxol‐induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain 109, 132 – 142.en_US
dc.identifier.citedreferenceEftekhari, S., Salvatore, C.A., Calamari, A., Kane, S.A., Tajti, J., Edvinsson, L. ( 2010 ). Differential distribution of calcitonin gene‐related peptide and its receptor components in the human trigeminal ganglion. Neuroscience 169, 683 – 696.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.