Show simple item record

Examining student work for evidence of teacher uptake of educative curriculum materials

dc.contributor.authorBismack, Amber Schultzen_US
dc.contributor.authorArias, Anna Mariaen_US
dc.contributor.authorDavis, Elizabeth A.en_US
dc.contributor.authorPalincsar, Annemarie Sullivanen_US
dc.date.accessioned2015-08-05T16:46:44Z
dc.date.available2016-09-06T15:43:58Zen
dc.date.issued2015-08en_US
dc.identifier.citationBismack, Amber Schultz; Arias, Anna Maria; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan (2015). "Examining student work for evidence of teacher uptake of educative curriculum materials." Journal of Research in Science Teaching 52(6): 816-846.en_US
dc.identifier.issn0022-4308en_US
dc.identifier.issn1098-2736en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112188
dc.description.abstractThe purpose of this study was to identify evidence in student work of teachers' uptake of educative features in educative curriculum materials. These are features in curriculum materials designed with the specific intent of supporting teacher learning and enactment. This study was prompted by previous work on educative curriculum materials and the need to determine how teachers' use of educative curriculum materials can influence student learning. Student work from two fourth‐grade teachers' enactment of an electric circuits unit was analyzed for evidence of teachers' uptake of educative features, which included characteristics of quality for particular science practices. Findings from the student work revealed that the teachers used many of the supports in the educative curriculum materials, especially those that could be used directly with students. The student work also reflected characteristics of high‐quality science practices, which were only supported within the educative features. This study supports and extends other work related to how teachers' use of educative curriculum materials may influence student learning and has implications for supporting teachers' productive engagement in teaching that supports the integration of science content and scientific practices, as emphasized in current reform efforts. © 2015 Wiley Periodicals, Inc. J Res Sci Teach 52: 816–846, 2015.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherLawrence Erlbaum Associatesen_US
dc.subject.otherscience practicesen_US
dc.subject.othereducative curriculum materialsen_US
dc.subject.otherstudent worken_US
dc.titleExamining student work for evidence of teacher uptake of educative curriculum materialsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelWomen's and Gender Studiesen_US
dc.subject.hlbsecondlevelEducationen_US
dc.subject.hlbsecondlevelManagementen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelHumanitiesen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.subject.hlbtoplevelBusiness and Economicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112188/1/tea21220-sup-0001-SuppFig_S3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112188/2/tea21220-sup-0001-SuppFig_S2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112188/3/tea21220.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112188/4/tea21220-sup-0001-SuppFig_S1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112188/5/tea21220-sup-0001-SuppFig_S4.pdf
dc.identifier.doi10.1002/tea.21220en_US
dc.identifier.sourceJournal of Research in Science Teachingen_US
dc.identifier.citedreferenceSandoval, W. A., & Millwood, K. A. ( 2005 ). The quality of students' use of evidence in written scientific explanations. Cognition and Instruction, 23 ( 1 ), 23 – 55.en_US
dc.identifier.citedreferenceNational Research Council. ( 2000 ). How people learn: Brain, mind, experience, and school: Expanded edition. Washington, DC: The National Academies Press.en_US
dc.identifier.citedreferenceNational Research Council. ( 2007 ). Taking science to school: Learning and teaching science in grades K‐8. Washington, DC: The National Academies Press.en_US
dc.identifier.citedreferenceNational Research Council. ( 2012 ). A framework for K‐12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.en_US
dc.identifier.citedreferenceNational Science Resources Center. ( 2004 ). Science technology and children electric circuits (Second ed.). Burlington, NC: Carolina Biological Supply Company.en_US
dc.identifier.citedreferenceNGSS Lead States. ( 2013 ). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.en_US
dc.identifier.citedreferenceO'Donnell, C. L. ( 2008 ). Defining, conceptualizing, and measuring fidelity of implementation and its relationship to outcomes in k‐12 curriculum intervention research. Review of Educational Research, 78 ( 1 ), 33 – 84.en_US
dc.identifier.citedreferenceOsborne, J., Erduran, S., & Simon, S. ( 2004 ). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41 ( 10 ), 994 – 1020.en_US
dc.identifier.citedreferenceRemillard, J. T., & Bryans, M. B. ( 2004 ). Teachers' orientations toward mathematics curriculum materials: Implications for teacher learning. Journal of Research in Mathematics Education, 35 ( 5 ), 352 – 388.en_US
dc.identifier.citedreferenceRemillard, J. T. ( 1999 ). Curriculum materials in mathematics education reform: A framework for examining teachers' curriculum development. Curriculum Inquiry, 29 ( 3 ), 315 – 342.en_US
dc.identifier.citedreferenceRemillard, J. T. ( 2000 ). Can curriculum materials support teachers' learning? Two fourth‐grade teachers' use of a new mathematics text. The Elementary School Journal, 100 ( 4 ), 331 – 350.en_US
dc.identifier.citedreferenceRemillard, J. T. ( 2005 ). Examining key concepts in research on teachers' use of mathematics curricula. Review of Educational Research, 75 ( 2 ), 211 – 246.en_US
dc.identifier.citedreferenceRuiz‐Primo, M. A., Li, M., Tsai, S. P., & Schneider, J. ( 2010 ). Testing one premise of scientific literacy in classrooms: Examining students' scientific explanations and student learning. Journal of Research in Science Teaching, 47 ( 5 ), 583 – 608.en_US
dc.identifier.citedreferenceMcNeill, K. ( 2009 ). Teachers' use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 93 ( 2 ), 233 – 268.en_US
dc.identifier.citedreferenceSandoval, W. A. ( 2003 ). Conceptual and epistemic aspects of students' scientific explanations. The Journal of the Learning Sciences, 12 ( 1 ), 5 – 51.en_US
dc.identifier.citedreferenceSandoval, W. A. ( 2014 ). Conjecture mapping: An approach to systematic educational design research. Journal of the Learning Sciences, 23 ( 1 ), 18 – 36.en_US
dc.identifier.citedreferenceSchneider, R. M., & Krajcik, J. ( 2002 ). Supporting science teacher learning: The role of educative curriculum materials. Journal of Science Teacher Education, 13 ( 3 ), 221 – 245.en_US
dc.identifier.citedreferenceSenk, S. L. & Thompson, D. R. (Eds.), Standards‐based school mathematics curricula: What are they? What do students learn? Mahway, NJ: Erlbaum.en_US
dc.identifier.citedreferenceSimon, S., Erduran, S., & Osborne, J. ( 2006 ). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28 ( 2–3 ), 235 – 260.en_US
dc.identifier.citedreferenceSonger, N. B., & Gotwals, A. W. ( 2012 ). Guiding explanation construction by children at the entry points of learning progressions. Journal of Research in Science Teaching, 49 ( 2 ), 141 – 165.en_US
dc.identifier.citedreferenceStake, R. E. ( 2000 ). Case studies. In Handbook of qualitative research. Thousand Oaks: Sage Publications, Inc.en_US
dc.identifier.citedreferenceStein, M. K., Remillard, J., & Smith, M. ( 2007 ). How curriculum influences student learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 319–369). Greenwich, CT: Information Age Publishing.en_US
dc.identifier.citedreferenceStylianides, G. J. ( 2007 ). Investigating the guidance offered to teachers in curriculum materials: The case of proof in mathematics. International Journal of Science and Mathematics Education, 6, 191 – 215.en_US
dc.identifier.citedreferenceTomkins, S. P., & Tunnicliffe, S. D. ( 2001 ). Looking for ideas: Observation, interpretation and hypothesis‐making by 12‐year‐old pupils undertaking science investigations. International Journal of Science Education, 23 ( 8 ), 791 – 813.en_US
dc.identifier.citedreferenceUnited Kingdom Department for Education. ( 2014 ). National curriculum in England: science programmes of study (Publication No. DFE‐ 00182–2013. London, England: Crown Publishing.en_US
dc.identifier.citedreferenceWeiss, I. R., & Pasley, J. D. ( 2004 ). What is high quality instruction? Educational Leadership, 61 ( 5 ), 24 – 28.en_US
dc.identifier.citedreferenceZangori, L., Forbes, C. T., & Biggers, M. ( 2013 ). Fostering student sense making in elementary science learning environments: Elementary teachers' use of science curriculum materials to promote explanation construction. Journal of Research in Science Teaching, 50 ( 8 ), 989 – 1017.en_US
dc.identifier.citedreferenceZembal‐Saul, C. L., McNeill, K. L., & Hershberger, K. ( 2012 ). What is your evidence? Engaging K‐5 children in constructing explanations in science. Boston, MA: Pearson.en_US
dc.identifier.citedreferenceAbell, S. ( 2007 ). Research on science teacher knowledge. In S. Abell & N. Lederman (Eds.), Handbook of research on science education (pp. 1105–1149). Mahwah, NJ: Lawrence Erlbaum Associates.en_US
dc.identifier.citedreferenceAkerson, V., & Donnelly, L. A. ( 2009 ). Teaching nature of science to K‐2 students: What understandings can they attain? International Journal of Science Education, 32 ( 1 ), 97 – 124.en_US
dc.identifier.citedreferenceArias, A. M., Bismack, A. S., Davis, E. A., & Palincsar, A. S. ( 2013 ). Finding evidence in the enactment: Elementary science teachers' use of educative curriculum materials. Unpublished paper presented at 2013 National Association for Research in Science Teaching Annual International Conference, Rio Grande, Puerto Rico.en_US
dc.identifier.citedreferenceArias, A. M., Davis, E. A., & Palincsar, A. S. ( 2012 ). Supporting elementary students in makind and recording scientific observations. Unpublished paper presented at 2012 National Association for Research in Science Teaching Annual International Conference, Indianapolis, IN.en_US
dc.identifier.citedreferenceArias, A. M., Palincsar, A. S., & Davis, E. A. ( 2014 ). Using educative curriculum materials to support teachers in engaging students to justify predictions. In J. Polman, E. Kyza, K. O'Neill, I. Tabak, W. Penuel, S. Jurow, K. O'Connor, T. Lee & L. D'Amico (Eds.), The international conference of the learning sciences 2014 (Vol. 3, pp. 1429–1431). Boulder, CO: Inernational Society of the Learning Sciences.en_US
dc.identifier.citedreferenceArias, A. M., Palincsar, A. S., & Davis, E. A. (in press). The design and use of educative curricular supports for text‐based discussions in science. To appear in Journal of Education.en_US
dc.identifier.citedreferenceAustralian Curriculum, Assessment and Reporting Authority (ACARA). (2013). Australian curriculum: Science. Retrieved from http://www.australiancurriculum.edu.au.en_US
dc.identifier.citedreferenceBall, D. L., & Cohen, D. K. ( 1996 ). Reform by the book: What is ‐ Or might be ‐ The role of curriculum materials in teacher learning and instructional reforms? Educational Researcher, 25 ( 9 ), 6 – 8, 14.en_US
dc.identifier.citedreferenceBall, D., & Cohen, D. ( 1999 ). Toward a practice‐based theory of professional education. Teaching as the learning profession. San Francisco: Jossey‐Bass.en_US
dc.identifier.citedreferenceBeyer, C. I., & Davis, E. A. ( 2006 ). Characterizing the quality of second graders' observations and explanations to inform the design of educative curriculum materials. In Proceedings of the 7th international conference on Learning sciences (pp. 43–49). International Society of the Learning Sciences.en_US
dc.identifier.citedreferenceBeyer, C. J., & Davis, E. A. ( 2009 ). Using educative curriculum materials to support preservice elementary teacher's curricular planning: A comparison between two different forms of support. Curriculum Inquiry, 39 ( 5 ), 679 – 703.en_US
dc.identifier.citedreferenceBiggers, M., Forbes, C. T., & Zangori, L. ( 2013 ). Elementary teachers' curriculum design and pedagogical reasoning for supporting students' comparison and evaluation of evidence‐based explanations. The Elementary Science Journal, 114 ( 1 ), 48 – 72.en_US
dc.identifier.citedreferenceBismack, A. M., Arias, A. M., Davis, E. A., & Palincsar, A. S. ( 2014 ). Connecting curriculum materials and teachers: Elementary science teachers' enactment of a reform‐based curricular unit. Journal of Science Teacher Education, 25 ( 4 ), 489 – 512.en_US
dc.identifier.citedreferenceBraaten, M., & Windschitl, M. ( 2011 ). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95 ( 4 ), 639 – 669.en_US
dc.identifier.citedreferenceBrown, M. ( 2009 ). Toward a theory of curriculum design and use: Understanding the teacher‐tool relationship. In J. Remillard, B. Herbel‐Eisenman & G. Lloyd (Eds.), Mathematics teachers at work: Connecting curriculum materials and classroom instruction (pp. 17–37). New York: Routledge.en_US
dc.identifier.citedreferenceCasteel, C. P., & Isom, B. ( 1994 ). Reciprocal processes in science and literacy learning. The Reading Teacher, 47 ( 7 ), 538 – 545.en_US
dc.identifier.citedreferenceCharalambous, C. Y., & Hill, H. C. ( 2012 ). Teacher knowledge, curriculum materials, and quality of instruction: Unpacking a complex relationship. Journal of Curriculum Studies, 44 ( 4 ), 443 – 466.en_US
dc.identifier.citedreferenceCollopy, R. ( 2003 ). Curriculum materials as a professional development tool: How a mathematics textbook affected two teachers' learning. The Elementary School Journal, 103 ( 3 ), 227 – 311.en_US
dc.identifier.citedreferenceDavis, E. A., & Krajcik, J. S. ( 2005 ). Designing Educative Curriculum Materials to Promote Teacher Learning. Educational Researcher, 34 ( 3 ), 3 – 14.en_US
dc.identifier.citedreferenceDavis, E. A., Palincsar, A. S., Arias, A. M., Bismack, A. S., Marulis, L., & Iwashyna, S. ( 2014 ). Designing educative curriculum materials: A theoretically and empirically driven process. Harvard Educational Review, 84 ( 1 ), 24 – 53.en_US
dc.identifier.citedreferenceDuncan, J. K., & Frymier, J. R. ( 1967 ). Explorations in the systemic study of curriculum. Theory into Practice, 6 ( 4 ), 180 – 199.en_US
dc.identifier.citedreferenceDuschl, R. A., & Osborne, J. ( 2002 ). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38 ( 1 ), 39 – 72.en_US
dc.identifier.citedreferenceEberbach, C., & Crowley, K. ( 2009 ). From everyday to scientific observation: How children learn to observe the biologist's world. Review of Educational Research, 79 ( 1 ), 39 – 68.en_US
dc.identifier.citedreferenceFord, D. J. ( 2005 ). The challenges of observing geologically: Third graders' descriptions of rock and mineral properties. Science Education, 89 ( 2 ), 276 – 295.en_US
dc.identifier.citedreferenceForbes, C. T., & Davis, E. A. ( 2010 ). Curriculum design for inquiry: Preservice elementary teachers' mobilization and adaptation of science curriculum materials. Journal of Research in Science Teaching, 47 ( 7 ), 820 – 839.en_US
dc.identifier.citedreferenceGilbert, J. K., & Boulter, C. J. ( 1998 ). Learning science through models and modelling. International handbook of science education, 2, 53 – 66.en_US
dc.identifier.citedreferenceGotwals, A. W., & Songer, N. B. ( 2013 ). Validity evidence for learning progression‐based assessment items that fuse core disciplinary ideas and science practices. Journal of Research in Science Teaching, 50 ( 5 ), 597 – 626.en_US
dc.identifier.citedreferenceGreatSchools, Inc. (1998–2015). [Austin Elementary]. Retrieved from [website].en_US
dc.identifier.citedreferenceHill, H. C., & Charalambous, C. Y. ( 2012 ). Teacher knowledge, curriculum materials, and quality of instruction: Lessons learned and open issues. Journal of Curriculum Studies, 44 ( 4 ), 559 – 576.en_US
dc.identifier.citedreferenceJusti, R., & van Driel, J. ( 2005 ). The development of science teachers' knowledge on models and modelling: Promoting, characterizing, and understanding the process. International Journal of Science Education, 27 ( 5 ), 549 – 573.en_US
dc.identifier.citedreferenceJusti, R., & van Driel, J. ( 2006 ). The use of the Interconnected Model of Teacher Professional Growth for understanding the development of science teachers' knowledge on models and modelling. Teaching and Teacher Education, 22, 437 – 450.en_US
dc.identifier.citedreferenceKennedy, M. M. ( 1997 ). The connection between research and practice. Educational Researcher, 26 ( 7 ), 4 – 12.en_US
dc.identifier.citedreferenceKennedy, M. M. ( 2004 ). Reform ideals and teachers' practical intentions. Education Policy Analysis Archives, 12 ( 13 ), 13.en_US
dc.identifier.citedreferenceLee, H., & Butler, N. ( 2003 ). Making authentic science accessible to students. International Journal of Science Education, 25 ( 8 ), 923 – 948.en_US
dc.identifier.citedreferenceLewis, J. M., & Blunk, M. L. ( 2012 ). Reading between the lines: Teaching linear algebra. Journal of Curriculum Studies, 44 ( 4 ), 515 – 536.en_US
dc.identifier.citedreferenceLin, S. F., Lieu, S. C., Chen, S., Huang, M. T., & Chang, W. H. ( 2012 ). Affording explicit‐reflective science teaching by using an educative teachers' guide. International Journal of Science Education, 34 ( 7 ), 999 – 1026.en_US
dc.identifier.citedreferenceMcNeill, K., & Krajcik, J. ( 2009 ). Synergy between teacher practices and curricular scaffolds to support students in using domain‐specific and domain general knowledge in writing arguments to explain phenomena. Journal of the Learning Sciences, 18 ( 3 ), 416 – 460.en_US
dc.identifier.citedreferenceMcNeill, K. ( 2011 ). Elementary students' views of explanation, argumentation, and evidence, and their abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48 ( 7 ), 793 – 823.en_US
dc.identifier.citedreferenceMerriam, S. B. ( 2009 ). Qualitative research: A guide to design and implementation. San Francisco, CA: Jossey‐Bass.en_US
dc.identifier.citedreferenceMetz, K. E. ( 2008 ). Narrowing the gulf between the practices of science and the elementary school science classroom. The Elementary School Journal, 109 ( 2 ), 138 – 161.en_US
dc.identifier.citedreferenceMichigan Department of Education. ( 2009 ). Science grade level content expectations. Lansing, MI: Michigan Department of Education.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.