Show simple item record

MESSENGER observations of multiscale Kelvin‐Helmholtz vortices at Mercury

dc.contributor.authorGershman, Daniel J.en_US
dc.contributor.authorRaines, Jim M.en_US
dc.contributor.authorSlavin, James A.en_US
dc.contributor.authorZurbuchen, Thomas H.en_US
dc.contributor.authorSundberg, Torbjörnen_US
dc.contributor.authorBoardsen, Scott A.en_US
dc.contributor.authorAnderson, Brian J.en_US
dc.contributor.authorKorth, Hajeen_US
dc.contributor.authorSolomon, Sean C.en_US
dc.date.accessioned2015-08-05T16:46:54Z
dc.date.available2016-07-05T17:27:57Zen
dc.date.issued2015-06en_US
dc.identifier.citationGershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Sundberg, Torbjörn ; Boardsen, Scott A.; Anderson, Brian J.; Korth, Haje; Solomon, Sean C. (2015). "MESSENGER observations of multiscale Kelvinâ Helmholtz vortices at Mercury." Journal of Geophysical Research: Space Physics 120(6): 4354-4368.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112201
dc.description.abstractObservations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft in Mercury's magnetotail demonstrate for the first time that Na+ ions exert a dynamic influence on Mercury's magnetospheric system. Na+ ions are shown to contribute up to ~30% of the ion thermal pressure required to achieve pressure balance in the premidnight plasma sheet. High concentrations of planetary ions should lead to Na+ dominance of the plasma mass density in these regions. On orbits with northward‐oriented interplanetary magnetic field and high (i.e., >1 cm−3) Na+ concentrations, MESSENGER has often recorded magnetic field fluctuations near the Na+ gyrofrequency associated with the Kelvin‐Helmholtz (K‐H) instability. These nightside K‐H vortices are characteristically different from those observed on Mercury's dayside that have a nearly constant wave frequency of ~0.025 Hz. Collectively, these observations suggest that large spatial gradients in the hot planetary ion population at Mercury may result in a transition from a fluid description to a kinetic description of vortex formation across the dusk terminator, providing the first set of truly multiscale observations of the K‐H instability at any of the diverse magnetospheric environments explored in the solar system.Key PointsNa+ can contribute up to ~30% of Mercury's plasma sheet thermal pressureK‐H wave frequencies can correlate with the local Na+ gyrofrequencyK‐H at Mercury transitions from MHD to kinetic scale across the dusk terminatoren_US
dc.publisherUniv. of Ariz. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherKelvin‐Helmholtzen_US
dc.subject.otherMESSENGERen_US
dc.subject.otherfinite gyroradiusen_US
dc.subject.otherMercuryen_US
dc.titleMESSENGER observations of multiscale Kelvin‐Helmholtz vortices at Mercuryen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112201/1/jgra51784.pdf
dc.identifier.doi10.1002/2014JA020903en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRussell, C. H., D. N. Baker, and J. A. Slavin ( 1988 ), The magnetosphere of Mercury, in Mercury, edited by F. Vilas, C. R. Chapman, and M. S. Matthews, pp. 514 – 561, Univ. of Ariz. Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceNakamura, T. K. M., H. Hasegawa, and I. Shinohara ( 2010 ), Kinetic effects on the Kelvin‐Helmholtz instability in ion‐to‐magnetohydrodynamic scale transverse velocity shear layers: Particle simulations, Phys. Plasmas, 17, 042119, doi: 10.1063/1.3385445.en_US
dc.identifier.citedreferenceNess, N. F., K. W. Behannon, R. P. Lepping, Y. C. Whang, and K. H. Schatten ( 1974 ), Magnetic field observations near Mercury: Preliminary results, Science, 185, 151 – 160.en_US
dc.identifier.citedreferenceNosé, M., A. Ieda, and S. P. Christon ( 2009 ), Geotail observations of plasma sheet ion composition over 16 years: On variations of average plasma ion mass and O + triggering substorm model, J. Geophys. Res., 114, A07223, doi: 10.1029/2009JA014203.en_US
dc.identifier.citedreferenceOgilvie, K. W., J. D. Scudder, R. E. Hartle, G. L. Siscoe, H. S. Bridge, A. J. Lazarus, J. R. Asbridge, S. J. Bame, and C. M. Yeates ( 1974 ), Observations at Mercury encounter by the plasma science experiment on Mariner 10, Science, 185, 145 – 151, doi: 10.1126/science.185.4146.145.en_US
dc.identifier.citedreferenceParal, J., and R. Rankin ( 2013 ), Dawn‐dusk asymmetry in the Kelvin‐Helmholtz instability at Mercury, Nat. Commun., 4, 1645, doi: 10.1038/Ncomms2676.en_US
dc.identifier.citedreferenceRaines, J. M., J. A. Slavin, T. H. Zurbuchen, G. Gloeckler, B. J. Anderson, D. N. Baker, H. Korth, S. M. Krimigis, and R. L. McNutt Jr. ( 2011 ), MESSENGER observations of the plasma environment near Mercury, Planet. Space Sci., 59, 2004 – 2015, doi: 10.1016/j.pss.2011.02.004.en_US
dc.identifier.citedreferenceRaines, J. M., et al. ( 2013 ), Distribution and compositional variations of plasma ions in Mercury's space environment: The first three Mercury years of MESSENGER observations, J. Geophys. Res. Space Physics, 118, 1604 – 1619, doi: 10.1029/2012JA018073.en_US
dc.identifier.citedreferenceRaines, J. M., D. J. Gershman, J. A. Slavin, T. H. Zurbuchen, H. Korth, B. J. Anderson, and S. C. Solomon ( 2014 ), Structure and dynamics of Mercury's magnetospheric cusp: MESSENGER measurements of protons and planetary ions, J. Geophys. Res. Space Physics, 119, 6587 – 6602, doi: 10.1002/2014JA020120.en_US
dc.identifier.citedreferenceSchriver, D., et al. ( 2011 ), Quasi‐trapped ion and electron populations at Mercury, Geophys. Res. Lett., 38, L23103, doi: 10.1029/2011GL049629.en_US
dc.identifier.citedreferenceSeki, K., N. Terada, M. Yagi, D. C. Delcourt, F. Leblanc, and T. Ogino ( 2013 ), Effects of the surface conductivity and the IMF strength on the dynamics of planetary ions in Mercury's magnetosphere, J. Geophys. Res. Space Physics, 118, 3233 – 3242, doi: 10.1002/jgra.50181.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010b ), MESSENGER observations of large flux transfer events at Mercury, Geophys. Res. Lett., 37, L02105, doi: 10.1029/2009GL041485.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012 ), MESSENGER observations of a flux‐transfer‐event shower at Mercury, J. Geophys. Res., 117, A00M06, doi: 10.1029/2012JA017926.en_US
dc.identifier.citedreferenceSolomon, S. C., et al. ( 2001 ), The MESSENGER mission to Mercury: Scientific objectives and implementation, Planet. Space Sci., 49, 1445 – 1465, doi: 10.1016/S0032-0633(01)00085-X.en_US
dc.identifier.citedreferenceSpeiser, T. W. ( 1965 ), Particle trajectories in model current sheets: 1. Analytical solutions, J. Geophys. Res., 70, 4219 – 4226, doi: 10.1029/JZ070i017p04219.en_US
dc.identifier.citedreferenceSpreiter, J. R., A. L. Summers, and A. Y. Alksne ( 1966 ), Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 14, 223 – 253, doi: 10.1016/0032-0633(66)90124-3.en_US
dc.identifier.citedreferenceSundberg, T., S. A. Boardsen, J. A. Slavin, L. G. Blomberg, and H. Korth ( 2010 ), The Kelvin‐Helmholtz instability at Mercury: An assessment, Planet. Space Sci., 58, 1434 – 1441, doi: 10.1016/j.pss.2010.06.008.en_US
dc.identifier.citedreferenceSundberg, T., S. A. Boardsen, J. A. Slavin, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, and S. C. Solomon ( 2012 ), MESSENGER orbital observations of large‐amplitude Kelvin‐Helmholtz waves at Mercury's magnetopause, J. Geophys. Res., 117, A04216, doi: 10.1029/2011JA017268.en_US
dc.identifier.citedreferenceTrávníček, P. M., D. Schriver, P. Hellinger, D. Herčík, B. J. Anderson, M. Sarantos, and J. A. Slavin ( 2010 ), Mercury's magnetosphere‐solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results, Icarus, 209, 11 – 22, doi: 10.1016/j.icarus.2010.01.008.en_US
dc.identifier.citedreferenceUritsky, V. M., J. A. Slavin, G. V. Khazanov, E. F. Donovan, S. A. Boardsen, B. J. Anderson, and H. Korth ( 2011 ), Kinetic‐scale magnetic turbulence and finite Larmor radius effects at Mercury, J. Geophys. Res., 116, A09236, doi: 10.1029/2011JA016744.en_US
dc.identifier.citedreferenceWang, Y.‐C., J. Mueller, U. Motschmann, and W.‐H. Ip ( 2010 ), A hybrid simulation of Mercury's magnetosphere for the MESSENGER encounters in year 2008, Icarus, 209, 46 – 52, doi: 10.1016/j.icarus.2010.05.020.en_US
dc.identifier.citedreferenceWilson, R. J., P. A. Delamere, F. Bagenal, and A. Masters ( 2012 ), Kelvin‐Helmholtz instability at Saturn's magnetopause: Cassini ion data analysis, J. Geophys. Res., 117, A03212, doi: 10.1029/2011JA016723.en_US
dc.identifier.citedreferenceWinglee, R. M., and E. Harnett ( 2011 ), Influence of heavy ionospheric ions on substorm onset, J. Geophys. Res., 116, A11212, doi: 10.1029/2011JA016447.en_US
dc.identifier.citedreferenceWinslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon ( 2012 ), Observations of Mercury's northern cusp region with MESSENGER's Magnetometer, Geophys. Res. Lett., 39, L08112, doi: 10.1029/2012GL051472.en_US
dc.identifier.citedreferenceWinslow, R. M., et al. ( 2014 ), Mercury's surface magnetic field determined from proton‐reflection magnetometry, Geophys. Res. Lett., 41, 4463 – 4470, doi: 10.1002/2014GL060258.en_US
dc.identifier.citedreferenceZurbuchen, T. H., J. M. Raines, G. Gloeckler, S. M. Krimigis, J. A. Slavin, P. L. Koehn, R. M. Killen, A. L. Sprague, R. L. McNutt Jr., and S. C. Solomon ( 2008 ), MESSENGER observations of the composition of Mercury's ionized exosphere and plasma environment, Science, 321, 90 – 92, doi: 10.1126/science.1159314.en_US
dc.identifier.citedreferenceZurbuchen, T. H., et al. ( 2011 ), MESSENGER observations of the spatial distribution of planetary ions near Mercury, Science, 333, 1862 – 1865, doi: 10.1126/science.1211302.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen ( 2011 ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859 – 1862, doi: 10.1126/science.1211001.en_US
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 556.en_US
dc.identifier.citedreferenceBenna, M., et al. ( 2010 ), Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby, Icarus, 209, 3 – 10, doi: 10.1016/j.icarus.2009.11.036.en_US
dc.identifier.citedreferenceBoardsen, S. A., and J. A. Slavin ( 2007 ), Search for pick‐up ion generated Na + cyclotron waves at Mercury, Geophys. Res. Lett., 34, L22106, doi: 10.1029/2007GL031504.en_US
dc.identifier.citedreferenceBoardsen, S. A., T. Sundberg, J. A. Slavin, B. J. Anderson, H. Korth, S. C. Solomon, and L. G. Blomberg ( 2010 ), Observations of Kelvin‐Helmholtz waves along the duskside boundary of Mercury's magnetosphere during MESSENGER's third flyby, Geophys. Res. Lett., 37, L12101, doi: 10.1029/2010GL043606.en_US
dc.identifier.citedreferenceBoardsen, S. A., J. A. Slavin, B. J. Anderson, H. Korth, D. Schriver, and S. C. Solomon ( 2012 ), Survey of coherent 1 Hz waves in Mercury's inner magnetosphere from MESSENGER observations, J. Geophys. Res., 117, A00M05, doi: 10.1029/2012JA017822.en_US
dc.identifier.citedreferenceBüchner, J., and L. M. Zelenyi ( 1989 ), Regular and chaotic charged‐particle motion in magnetotail‐like field reversals: 1. Basic theory of trapped motion, J. Geophys. Res., 94, 11,821 – 11,842, doi: 10.1029/JA094iA09p11821.en_US
dc.identifier.citedreferenceDelamere, P. A., R. J. Wilson, S. Eriksson, and F. Bagenal ( 2013 ), Magnetic signatures of Kelvin‐Helmholtz vortices on Saturn's magnetopause: Global survey, J. Geophys. Res. Space Physics, 118, 393 – 404, doi: 10.1029/2012JA018197.en_US
dc.identifier.citedreferenceDelcourt, D. C. ( 2013 ), On the supply of heavy planetary material to the magnetotail of Mercury, Ann. Geophys., 31, 1673 – 1679, doi: 10.5194/angeo-31-1673-2013.en_US
dc.identifier.citedreferenceDelcourt, D. C., S. Grimald, F. Leblanc, J.‐J. Berthelier, A. Millilo, A. Mura, S. Orsini, and T. E. Moore ( 2003 ), A quantitative model of the planetary Na + contribution to Mercury's magnetosphere, Ann. Geophys., 21, 1723 – 1736, doi: 10.5194/angeo-21-1723-2003.en_US
dc.identifier.citedreferenceDelcourt, D. C., F. Leblanc, K. Seki, N. Terada, T. E. Moore, and M.‐C. Fok ( 2007 ), Ion energization during substorms at Mercury, Planet. Space Sci., 55, 1502 – 1508, doi: 10.1016/j.pss.2006.11.026.en_US
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1002/jgra.50123.en_US
dc.identifier.citedreferenceDiBraccio, G. A., et al. ( 2015 ), MESSENGER observations of flux ropes in Mercury's magnetotail, Planet. Space Sci., doi: 10.1016/j.pss.2014.12.016.en_US
dc.identifier.citedreferenceFaganello, M., F. Califano, F. Pegoraro, and T. Andreussi ( 2012 ), Double midlatitude dynamical reconnection at the magnetopause: An efficient mechanism allowing solar wind to enter the Earth's magnetosphere, Europhys. Lett., 100, 69001, doi: 10.1209/0295-5075/100/69001.en_US
dc.identifier.citedreferenceFairfield, D. H., and K. W. Behannon ( 1976 ), Bow shock and magnetosheath waves at Mercury, J. Geophys. Res., 81, 3897 – 3906, doi: 10.1029/JA081i022p03897.en_US
dc.identifier.citedreferenceGary, S. P. ( 1991 ), Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review, Space Sci. Rev., 56, 373 – 415.en_US
dc.identifier.citedreferenceGary, S. P., S. A. Fuselier, and B. J. Anderson ( 1993 ), Ion anisotropy instabilities in the magnetosheath, J. Geophys. Res., 98, 1481 – 1488, doi: 10.1029/92JA01844.en_US
dc.identifier.citedreferenceGershman, D. J., T. H. Zurbuchen, L. A. Fisk, J. A. Gilbert, J. M. Raines, B. J. Anderson, C. W. Smith, H. Korth, and S. C. Solomon ( 2012 ), Solar wind alpha particles and heavy ions in the inner heliosphere, J. Geophys. Res., 117, A00M02, doi: 10.1029/2012JA017829.en_US
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2013 ), Magnetic flux pileup and plasma depletion in Mercury's subsolar magnetosheath, J. Geophys. Res. Space Physics, 118, 7181 – 7199, doi: 10.1002/2013JA019244.en_US
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2014 ), Ion kinetic properties in Mercury's premidnight plasma sheet, Geophys. Res. Lett., 41, 5740 – 5747, doi: 10.1002/2014GL060468.en_US
dc.identifier.citedreferenceGlassmeier, K.‐H., H.‐U. Auster, and U. Motschmann ( 2007 ), A feedback dynamo generating Mercury's magnetic field, Geophys. Res. Lett., 34, L22201, doi: 10.1029/2007GL031662.en_US
dc.identifier.citedreferenceHasegawa, H., M. Fujimoto, T.‐D. Phan, H. Rème, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. TanDokoro ( 2004 ), Transport of solar wind into Earth's magnetosphere through rolled‐up Kelvin‐Helmholtz vortices, Nature, 430, 755 – 758, doi: 10.1038/nature02799.en_US
dc.identifier.citedreferenceHwang, K.‐J., M. M. Kuznetsova, F. Sahraoui, M. L. Goldstein, E. Lee, and G. K. Parks ( 2011 ), Kelvin‐Helmholtz waves under southward interplanetary magnetic field, J. Geophys. Res., 116, A08210, doi: 10.1029/2011JA016596.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010a ), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665 – 668, doi: 10.1126/science.1188067.en_US
dc.identifier.citedreferenceImber, S. M., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, R. L. McNutt Jr., and S. C. Solomon ( 2014 ), MESSENGER observations of large dayside flux transfer events: Do they drive Mercury's substorm cycle?, J. Geophys. Res. Space Physics, 119, 5613 – 5623, doi: 10.1002/2014JA019884.en_US
dc.identifier.citedreferenceKabin, K., M. H. Heimpel, R. Rankin, J. M. Aurnou, N. Gómez‐Pérez, J. Paral, T. I. Gombosi, T. H. Zurbuchen, P. L. Koehn, and D. L. DeZeeuw ( 2008 ), Global MHD modeling of Mercury's magnetosphere with applications to the MESSENGER mission and dynamo theory, Icarus, 195, 1 – 15, doi: 10.1016/j.icarus.2007.11.028.en_US
dc.identifier.citedreferenceKistler, L. M., et al. ( 2006 ), Ion composition and pressure changes in storm time and nonstorm substorms in the vicinity of the near‐Earth neutral line, J. Geophys. Res., 111, A11222, doi: 10.1029/2006JA011939.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, C. L. Johnson, M. E. Purucker, R. M. Winslow, S. C. Solomon, and R. L. McNutt Jr. ( 2011 ), Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, Geophys. Res. Lett., 38, L22201, doi: 10.1029/2011GL049451.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, C. L. Johnson, R. M. Winslow, J. A. Slavin, M. E. Purucker, S. C. Solomon, and R. L. McNutt Jr. ( 2012 ), Characteristics of the plasma distribution in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, J. Geophys. Res., 117, A00M07, doi: 10.1029/2012JA018052.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, D. J. Gershman, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, S. C. Solomon, and R. L. McNutt Jr. ( 2014 ), Plasma distribution in Mercury's magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations, J. Geophys. Res. Space Physics, 119, 2917 – 2932, doi: 10.1002/2013JA019567.en_US
dc.identifier.citedreferenceLee, L. C., R. K. Albano, and J. R. Kan ( 1981 ), Kelvin‐Helmholtz instability in the magnetopause‐boundary layer region, J. Geophys. Res., 86, 54 – 58, doi: 10.1029/JA086iA01p00054.en_US
dc.identifier.citedreferenceLennartsson, W., and E. G. Shelley ( 1986 ), Survey of 0.1‐ to 16‐keV/e plasma sheet ion composition, J. Geophys. Res., 91, 3061 – 3076, doi: 10.1029/JA091iA03p03061.en_US
dc.identifier.citedreferenceLiao, J., L. M. Kistler, C. G. Mouikis, B. Klecker, I. Dandouras, and J.‐C. Zhang ( 2010 ), Statistical study of O + transport from the cusp to the lobes with Cluster CODIF data, J. Geophys. Res., 115, A00J15, doi: 10.1029/2010JA015613.en_US
dc.identifier.citedreferenceLiljeblad, E., T. Sundberg, T. Karlsson, and A. Kullen ( 2014 ), Statistical investigation of Kelvin‐Helmholtz waves at the magnetopause of Mercury, J. Geophys. Res. Space Physics, 119, 9670 – 9683, doi: 10.1002/2014JA020614.en_US
dc.identifier.citedreferenceLiu, Y., L. M. Kistler, C. G. Mouikis, B. Klecker, and I. Dandouras ( 2013 ), Heavy ion effects on substorm loading and unloading in the Earth's magnetotail, J. Geophys. Res. Space Physics, 118, 2101 – 2112, doi: 10.1002/jgra.50240.en_US
dc.identifier.citedreferenceMasters, A., et al. ( 2010 ), Cassini observations of a Kelvin‐Helmholtz vortex in Saturn's outer magnetosphere, J. Geophys. Res., 115, A07225, doi: 10.1029/2010JA015351.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.