Show simple item record

Label‐free profiling of white adipose tissue of rats exhibiting high or low levels of intrinsic exercise capacity

dc.contributor.authorBowden‐davies, Kellyen_US
dc.contributor.authorConnolly, Joanneen_US
dc.contributor.authorBurghardt, Paulen_US
dc.contributor.authorKoch, Lauren G.en_US
dc.contributor.authorBritton, Steven L.en_US
dc.contributor.authorBurniston, Jatin G.en_US
dc.date.accessioned2015-08-05T16:47:14Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationBowden‐davies, Kelly ; Connolly, Joanne; Burghardt, Paul; Koch, Lauren G.; Britton, Steven L.; Burniston, Jatin G. (2015). "Labelâ free profiling of white adipose tissue of rats exhibiting high or low levels of intrinsic exercise capacity." PROTEOMICS 15(13): 2342-2349.en_US
dc.identifier.issn1615-9853en_US
dc.identifier.issn1615-9861en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112235
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAdipokinesen_US
dc.subject.otherMetabolic syndromeen_US
dc.subject.otherLabel‐free quantitationen_US
dc.subject.otherAnimal proteomicsen_US
dc.subject.otherAerobic capacityen_US
dc.subject.otherObesityen_US
dc.titleLabel‐free profiling of white adipose tissue of rats exhibiting high or low levels of intrinsic exercise capacityen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112235/1/pmic8115.pdf
dc.identifier.doi10.1002/pmic.201400537en_US
dc.identifier.sourcePROTEOMICSen_US
dc.identifier.citedreferenceDeng, J., Liu, S., Zou, L., Xu, C. et al., Lipolysis response to endoplasmic reticulum stress in adipose cells. J. Biol. Chem. 2012, 287, 6240 – 6249.en_US
dc.identifier.citedreferenceLehr, S., Hartwig, S., Lamers, D., Famulla, S. et al., Identification and validation of novel adipokines released from primary human adipocytes. Mol. Cell Proteomics 2012, 11, M111.010504.en_US
dc.identifier.citedreferenceGustafson, B., Hammarstedt, A., Andersson, C. X., Smith, U., Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2276 – 2283.en_US
dc.identifier.citedreferenceBasseri, S., Lhoták, S., Sharma, A. M., Austin, R. C., The chemical chaperone 4‐phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response. J. Lipid Res. 2009, 50, 2486 – 2501.en_US
dc.identifier.citedreferenceBull, V. H., Thiede, B., Proteome analysis of tunicamycin‐induced ER stress. Electrophoresis 2012, 33, 1814 – 1823.en_US
dc.identifier.citedreferenceMorris, E. M., Whaley‐Connell, A. T., Thyfault, J. P., Britton, S. L. et al., Low aerobic capacity and high‐fat diet contribute to oxidative stress and IRS‐1 degradation in the kidney. Am. J. Nephrol. 2009, 30, 112 – 119.en_US
dc.identifier.citedreferenceTweedie, C., Romestaing, C., Burelle, Y., Safdar, A. et al., Lower oxidative DNA damage despite greater ros production in muscles from rats selectively bred for high running capacity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 300, R544 – R553.en_US
dc.identifier.citedreferenceBurniston, J. G., Kenyani, J., Wastling, J. M., Burant, C. F. et al., Proteomic analysis reveals perturbed energy metabolism and elevated oxidative stress in hearts of rats with inborn low aerobic capacity. Proteomics 2011, 11, 3369 – 3379.en_US
dc.identifier.citedreferenceJager, J., Grémeaux, T., Gonzalez, T., Bonnafous, S. et al., Tpl2 kinase is upregulated in adipose tissue in obesity and may mediate interleukin‐1beta and tumor necrosis factor‐{alpha} effects on extracellular signal‐regulated kinase activation and lipolysis. Diabetes 2010, 59, 61 – 70.en_US
dc.identifier.citedreferenceLass, A., Zimmermann, R., Haemmerle, G., Riederer, M. et al., Adipose triglyceride lipase‐mediated lipolysis of cellular fat stores is activated by CGI‐58 and defective in Chanarin‐Dorfman Syndrome. Cell Metab. 2006, 3, 309 – 319.en_US
dc.identifier.citedreferenceFujiya, A., Nagasaki, H., Seino, Y., Okawa, T. et al., The role of S100B in the interaction between adipocytes and macrophages. Obesity (Silver Spring) 2014, 22, 371 – 379.en_US
dc.identifier.citedreferencePham, N. A. F., Cucullo, V. A., Teng, L. A., Biberthaler, Q. A. et al., Extracranial sources of S100B do not affect serum levels. PLoS One 2010, 5, e12691.en_US
dc.identifier.citedreferenceSteiner, J., Myint, A. M., Schiltz, K., Westphal, S. et al., S100B serum levels in schizophrenia are presumably related to visceral obesity and insulin resistance. Cardiovasc. Psychiatry Neurol. 2010, 2010, 480707.en_US
dc.identifier.citedreferenceSteiner, J., Schiltz, K., Walter, M., Wunderlich, M. T. et al., S100B serum levels are closely correlated with body mass index: an important caveat in neuropsychiatric research. Psychoneuroendocrinology 2010, 35, 321 – 324.en_US
dc.identifier.citedreferenceLiu, X., Feng, Q., Chen, Y., Zuo, J. et al., Proteomics‐based identification of differentially‐expressed proteins including galectin‐1 in the blood plasma of type 2 diabetic patients. J. Proteome Res. 2009, 8, 1255 – 1262.en_US
dc.identifier.citedreferenceSvensson, A., Tågerud, S., Galectin‐1 expression in innervated and denervated skeletal muscle. Cell Mol. Biol. Lett. 2009, 14, 128 – 138.en_US
dc.identifier.citedreferenceGutierrez‐Aguilar, R., Kim, D. H., Woods, S. C., Seeley, R. J., Expression of new loci associated with obesity in diet‐induced obese rats: from genetics to physiology. Obesity (Silver Spring). 2012, 20, 306 – 312.en_US
dc.identifier.citedreferenceMasson, O., Prébois, C., Derocq, D., Meulle, A. et al., Cathepsin‐D, a key protease in breast cancer, is up‐regulated in obese mouse and human adipose tissue, and controls adipogenesis. PLoS One 2011, 6, e16452.en_US
dc.identifier.citedreferenceRoca‐Rivada, A., Alonso, J., Al‐Massadi, O., Castelao, C. et al., Secretome analysis of rat adipose tissues shows location‐specific roles for each depot type. J. Proteomics. 2011, 74, 1068 – 1079.en_US
dc.identifier.citedreferenceRosenow, A., Arrey, T. N., Bouwman, F. G., Noben, J. P. et al., Identification of novel human adipocyte secreted proteins by using SGBS cells. J. Proteome Res. 2010, 9, 5389 – 5401.en_US
dc.identifier.citedreferenceZucker, L. M., Zucker, T. F., Fatty, a new mutation in the rat. J. Hered. 1961, 52, 275 – 278.en_US
dc.identifier.citedreferenceNoland, R. C., Thyfault, J. P., Henes, S. T., Whitfield, B. R. et al., Artificial selection for high‐capacity endurance running is protective against high‐fat diet‐induced insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E31 – E41.en_US
dc.identifier.citedreferenceWisloff, U., Najjar, S. M., Ellingsen, O., Haram, P. M. et al., Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 2005, 307, 418 – 420.en_US
dc.identifier.citedreferenceRivas, D. A., Lessard, S. J., Saito, M., Friedhuber, A. M. et al., Low intrinsic running capacity is associated with reduced skeletal muscle substrate oxidation and lower mitochondrial content in white skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R835 – R843.en_US
dc.identifier.citedreferenceKoch, L. G., Kemi, O. J., Qi, N., Leng, S. X., et al., Intrinsic aerobic capacity sets a divide for aging and longevity. Circ. Res. 2011, 109, 1162 – 1172.en_US
dc.identifier.citedreferenceNovak, C. M., Escande, C., Burghardt, P. R., Zhang, M., et al., Spontaneous activity, economy of activity, and resistance to diet‐induced obesity in rats bred for high intrinsic aerobic capacity. Horm. Behav. 2010, 58, 355 – 367.en_US
dc.identifier.citedreferenceDemarco, V. G., Johnson, M. S., Ma, L., Pulakat, L., et al., Overweight female rats selectively bred for low aerobic capacity exhibit increased myocardial fibrosis and diastolic dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H1667 – H1682.en_US
dc.identifier.citedreferenceDesprés, J. P., Lemieux, I., Bergeron, J., Pibarot, P., et al., Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1039 – 1049.en_US
dc.identifier.citedreferenceStephenson, E. J., Lessard, S. J., Rivas, D. A., Watt, M. J. et al., Exercise training enhances white adipose tissue metabolism in rats selectively bred for low‐ or high‐endurance running capacity. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E429 – E438.en_US
dc.identifier.citedreferenceLevin, Y., Hradetzky, E., Bahn, S., Quantification of proteins using data‐independent analysis (MSE) in simple andcomplex samples: a systematic evaluation. Proteomics 2011, 11, 3273 – 3287.en_US
dc.identifier.citedreferenceSilva, J. C., Gorenstein, M. V., Li, G. Z., Vissers, J. P., Geromanos, S. J., Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell Proteomics. 2006, 5, 144 – 156.en_US
dc.identifier.citedreferenceKoch, L. G., Britton, S. L., Artificial selection for intrinsic aerobic endurance running capacity in rats. Physiol. Genomics 2001, 5, 45 – 52.en_US
dc.identifier.citedreferenceLi, G. Z., Vissers, J. P., Silva, J. C., Golick, D. et al., Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 2009, 9, 1696 – 1719.en_US
dc.identifier.citedreferenceCsordas, A., Ovelleiro, D., Wang, R., Foster, J. M., et al., PRIDE: quality control in a proteomics data repository. Database (Oxford) 2012, 2012, bas004.en_US
dc.identifier.citedreferenceHuang, d. a. W., Sherman, B. T., Lempicki, R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44 – 57.en_US
dc.identifier.citedreferenceHuang, d. a. W., Sherman, B. T., Lempicki, R. A., Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1 – 13.en_US
dc.identifier.citedreferenceFranceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M. et al., STRING v9.1: protein‐protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013, 41, D808 – D815.en_US
dc.identifier.citedreferenceBowman, T. A., Ramakrishnan, S. K., Kaw, M., Lee, S. J. et al., Caloric restriction reverses hepatic insulin resistance and steatosis in rats with low aerobic capacity. Endocrinology 2010, 151, 5157 – 5164.en_US
dc.identifier.citedreferenceLessard, S. J., Rivas, D. A., Stephenson, E. J., Yaspelkis, B. B. et al., Exercise training reverses impaired skeletal muscle metabolism induced by artificial selection for low aerobic capacity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 300, R175 – R182.en_US
dc.identifier.citedreferenceNaples, S. P., Borengasser, S. J., Rector, R. S., Uptergrove, G. M. et al., Skeletal muscle mitochondrial and metabolic responses to a high‐fat diet in female rats bred for high and low aerobic capacity. Appl. Physiol. Nutr. Metab. 2010, 35, 151 – 162.en_US
dc.identifier.citedreferenceThyfault, J. P., Rector, R. S., Uptergrove, G. M., Borengasser, S. J. et al., Rats selectively bred for low aerobic capacity have reduced hepatic mitochondrial oxidative capacity and susceptibility to hepatic steatosis and injury. J. Physiol. 2009, 587, 1805 – 1816.en_US
dc.identifier.citedreferenceXie, X., Yi, Z., Bowen, B., Wolf, C. et al., Characterization of the human adipocyte proteome and reproducibility of protein abundance by one‐dimensional gel electrophoresis and HPLC‐ESI‐MS/MS. J. Proteome Res. 2010, 9, 4521 – 4534.en_US
dc.identifier.citedreferenceAdachi, J., Kumar, C., Zhang, Y., Mann, M., In‐depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol. Cell Proteomics 2007, 6, 1257 – 1273.en_US
dc.identifier.citedreferenceDuffaut, C., Galitzky, J., Lafontan, M., Bouloumié, A., Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem. Biophys. Res. Commun. 2009, 384, 482 – 485.en_US
dc.identifier.citedreferenceWiner, D. A., Winer, S., Shen, L., Wadia, P. P. et al., B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 2011, 17, 610 – 617.en_US
dc.identifier.citedreferenceDeFuria, J., Belkina, A. C., Jagannathan‐Bogdan, M., Snyder‐Cappione, J. et al., B cells promote inflammation in obesity and type 2 diabetes through regulation of T‐cell function and an inflammatory cytokine profile. Proc. Natl. Acad. Sci. USA 2013, 110, 5133 – 5138.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.