Show simple item record

Colonization from divergent ancestors: glaciation signatures on contemporary patterns of genomic variation in Collared Pikas (Ochotona collaris)

dc.contributor.authorLanier, Hayley C.en_US
dc.contributor.authorMassatti, Roben_US
dc.contributor.authorHe, Qixinen_US
dc.contributor.authorOlson, Link E.en_US
dc.contributor.authorKnowles, L. Laceyen_US
dc.date.accessioned2015-08-05T16:47:15Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationLanier, Hayley C.; Massatti, Rob; He, Qixin; Olson, Link E.; Knowles, L. Lacey (2015). "Colonization from divergent ancestors: glaciation signatures on contemporary patterns of genomic variation in Collared Pikas (Ochotona collaris)." Molecular Ecology 24(14): 3688-3705.en_US
dc.identifier.issn0962-1083en_US
dc.identifier.issn1365-294Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112236
dc.description.abstractIdentifying the genetic structure of a species and the factors that drive it is an important first step in modern population management, in part because populations evolving from separate ancestral sources may possess potentially different characteristics. This is especially true for climate‐sensitive species such as pikas, where the delimitation of distinct genetic units and the characterization of population responses to contemporary and historical environmental pressures are of particular interest. We combined a restriction site‐associated DNA sequencing (RADSeq) data set containing 4156 single nucleotide polymorphisms with ecological niche models (ENMs) of present and past habitat suitability to characterize population composition and evaluate the effects of historical range shifts, contemporary climates and landscape factors on gene flow in Collared Pikas, which are found in Alaska and adjacent regions of northwestern Canada and are the lesser‐studied of North America's two pika species. The results suggest that contemporary environmental factors contribute little to current population connectivity. Instead, genetic diversity is strongly shaped by the presence of three ancestral lineages isolated during the Pleistocene (~148 and 52 kya). Based on ENMs and genetic data, populations originating from a northern refugium experienced longer‐term stability, whereas both southern lineages underwent population expansion – contradicting the southern stability and northern expansion patterns seen in many other taxa. Current populations are comparable with respect to generally low diversity within populations and little‐to‐no recent admixture. The predominance of divergent histories structuring populations implies that if we are to understand and manage pika populations, we must specifically assess and accurately account for the forces underlying genetic similarity.en_US
dc.publisherCommittee on the Status of Endangered Wildlife in Canadaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherphylogeographyen_US
dc.subject.othermammalen_US
dc.subject.otherstructureen_US
dc.subject.otherclimate changeen_US
dc.subject.otherAlaskaen_US
dc.titleColonization from divergent ancestors: glaciation signatures on contemporary patterns of genomic variation in Collared Pikas (Ochotona collaris)en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112236/1/mec13270.pdf
dc.identifier.doi10.1111/mec.13270en_US
dc.identifier.sourceMolecular Ecologyen_US
dc.identifier.citedreferencePhillips SJ, Anderson RP, Schapire RE ( 2006 ) Maximum entropy modeling of species geographic distributions. Ecological Modeling, 19, 231 – 259.en_US
dc.identifier.citedreferencePetit RJ, Aguinagalde I, de Beauliu J‐L et al. ( 2003 ) Glacial refugia: hotspots but not melting pots of genetic diversity. Science, 300, 1563 – 1565.en_US
dc.identifier.citedreferenceNei M, Kumar S ( 2000 ) Molecular Evolution and Phylogenetics. Oxford University Press, New York City, New York.en_US
dc.identifier.citedreferencePielou EC ( 1991 ) After the Ice Age: the return of life to glaciated North America. University of Chicago Press, Chicago, Illinois.en_US
dc.identifier.citedreferencePritchard JK, Stephens M, Donnelly P ( 2000 ) Inference of population structure using multilocus genotype data. Genetics, 155, 945 – 959.en_US
dc.identifier.citedreferenceR Core Team ( 2012 ) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.en_US
dc.identifier.citedreferenceRodhouse TJ, Beever EA, Garrett LK et al. ( 2010 ) Distribution of American pikas in a low‐elevation lava landscape: conservation implications from the range periphery. Journal of Mammalogy, 91, 1287 – 1299.en_US
dc.identifier.citedreferenceRosenberg NA ( 2004 ) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137 – 138.en_US
dc.identifier.citedreferenceRyan PG, Bloomer P, Moloney CL, Grant TJ, Delport W ( 2007 ) Ecological speciation in South Atlantic island finches. Science, 315, 1420 – 1423.en_US
dc.identifier.citedreferenceShafer ABA, Cullingham CI, Cote SD, Coltman DW ( 2010 ) Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Molecular Ecology, 19, 4589 – 4621.en_US
dc.identifier.citedreferenceShafer ABA, Côté SD, Coltman DW ( 2011 ) Hot spots of genetic diversity descended from multiple Pleistocene refugia in an alpine ungulate. Evolution, 65, 125 – 138.en_US
dc.identifier.citedreferenceShah VB ( 2007 ) An interactive system for combinatorial scientific computing with an emphasis on programmer productivity. PhD Thesis, University of California, Santa Barbara, California.en_US
dc.identifier.citedreferenceSimpson WG ( 2009 ) American pikas inhabit low‐elevation sites outside the species' previously described bioclimatic envelope. Western North American Naturalist, 69, 243 – 250.en_US
dc.identifier.citedreferenceSmith AT ( 2008 ) The world of pikas. In: Lagomorph biology: evolution, ecology and conservation (eds Alves PC, Ferrand N, Hackländer K ), pp. 89 – 102. Springer, Berlin.en_US
dc.identifier.citedreferenceSmith AT, Ivins BL ( 1983 ) Colonization in a pika population: dispersal vs. philopatry. Behavioral Ecology and Sociobiology, 13, 37 – 47.en_US
dc.identifier.citedreferenceSmith AT, Li W, Hik DS ( 2004 ) Pikas as harbingers of global warming. Species, 41, 4 – 5.en_US
dc.identifier.citedreferenceStorfer A, Murphy MA, Evans JS et al. ( 2007 ) Putting the ‘landscape’ in landscape genetics. Heredity, 98, 128 – 142.en_US
dc.identifier.citedreferenceSturm M, Racine C, Tape K ( 2001 ) Climate change: increasing shrub abundance in the Arctic. Nature, 411, 546 – 547.en_US
dc.identifier.citedreferenceToews DPL, Brelsford A ( 2012 ) The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21, 3907 – 3930.en_US
dc.identifier.citedreferenceUSFWS ( 2010 ) 12‐month finding on a petition to list the American pika as threatened or endangered. Federal Register, 75, 6437 – 6471.en_US
dc.identifier.citedreferenceWagner CE, Keller I, Wittwer S et al. ( 2013 ) Genome‐wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Molecular Ecology, 22, 787 – 798.en_US
dc.identifier.citedreferenceWang C, Zöllner S, Rosenberg NA ( 2014 ) A quantitative comparison of the similarity between genes and geography in worldwide human populations. PLoS Genetics, 8, e1002886.en_US
dc.identifier.citedreferenceWeksler M, Lanier HC, Olson LE ( 2010 ) Eastern Beringian biogeography: historical and spatial genetic structure of singing voles ( Microtus miurus ) in Alaska. Journal of Biogeography, 37, 1414 – 1431.en_US
dc.identifier.citedreferenceZgurski JM, Hik DS ( 2012 ) Polygynandry and even‐sexed dispersal in a population of collared pikas, Ochotona collaris. Animal Behavior, 83, 1075 – 1082.en_US
dc.identifier.citedreferenceZgurski JM, Hik DS ( 2014 ) Gene flow and the restoration of genetic diversity in a fluctuating collared pika ( Ochotona collaris ) population. Conservation Genetics, 15, 37 – 48.en_US
dc.identifier.citedreferenceAlvarado‐Serrano DF, Knowles LL ( 2013 ) Ecological niche models in phylogeographic studies: applications, advances and precautions. Molecular Ecology Resources, 14, 233 – 248.en_US
dc.identifier.citedreferenceAnderson RP, Raza A ( 2010 ) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys ) in Venezuela. Journal of Biogeography, 37, 1378 – 1393.en_US
dc.identifier.citedreferenceBeever EA, Brussard PE, Berger J ( 2003 ) Patterns of apparent extirpation among isolated populations of pikas ( Ochotona princeps ) in the Great Basin. Journal of Mammalogy, 84, 37 – 54.en_US
dc.identifier.citedreferenceBraconnot P, Otto‐Bliesner B, Harrison S et al. ( 2007 ) Results of PMIP2 coupled simulations of the Mid‐Holocene and Last Glacial Maximum‐Part 1: experiments and large‐scale features. Climate of the Past, 3, 261 – 277.en_US
dc.identifier.citedreferenceBroadbooks HE ( 1965 ) Ecology and distribution of the pikas of Washington and Alaska. American Midland Naturalist, 73, 299 – 335.en_US
dc.identifier.citedreferenceCastillo JA, Epps CW, Davis AR, Cushman SA ( 2014 ) Landscape effects on gene flow for a climate‐sensitive montane species, the American pika. Molecular Ecology, 23, 843 – 856.en_US
dc.identifier.citedreferenceCatchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH ( 2011 ) Stacks: building and genotyping loci de novo from short‐read sequences. Genes, Genomes, Genetics, 1, 171 – 182.en_US
dc.identifier.citedreferenceCatchen J, Hohenlohe P, Bassham S, Amores A, Cresko WA ( 2013 ) Stacks: an analysis tool set for population genomics. Molecular Ecology, 22, 3124 – 3140.en_US
dc.identifier.citedreferenceCOSEWIC ( 2011 ) COSEWIC assessment and status report on the Collared Pika Ochotona collaris in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa, Ontario.en_US
dc.identifier.citedreferenceDawson MR ( 1967 ) Lagomorph history and the stratigraphic record. University of Kansas Department of Geology Special Publications, 2, 287 – 316.en_US
dc.identifier.citedreferenceDixon EJ ( 2013 ) Late Pleistocene colonization of North America from Northeast Asia: new insights from large‐scale paleogeographic reconstructions. Quaternary International, 285, 57 – 67.en_US
dc.identifier.citedreferenceEarl DA, vonHoldt BM ( 2012 ) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources, 4, 359 – 361.en_US
dc.identifier.citedreferenceElith J, Kearney M, Philips S ( 2010 ) The art of modeling range‐shifted species. Methods in Ecology and Evolution, 1, 330 – 342.en_US
dc.identifier.citedreferenceEngelhardt BE, Stephens M ( 2010 ) Analysis of population structure: a unifying framework and novel methods based on sparse factor analysis. PLoS Genetics, 6, e1001117.en_US
dc.identifier.citedreferenceErb LP, Ray C, Guralnick R ( 2011 ) On the generality of a climate‐mediated shift in the distribution of the American pika ( Ochotona princeps ). Ecology, 92, 1730 – 1735.en_US
dc.identifier.citedreferenceEvanno G, Regnaut S, Goudet J ( 2005 ) Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14, 2611 – 2620.en_US
dc.identifier.citedreferenceExcoffier L, Lischer HEL ( 2010 ) Arlequin suite ver 3.5: a new series of programs to preform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564 – 567.en_US
dc.identifier.citedreferenceExcoffier L, Dupanloup I, Huerta‐Sánchez E, Sousa VC, Foll M ( 2013 ) Robust demographic inference from genomic and SNP data. PLoS Genetics, 9, e1003905.en_US
dc.identifier.citedreferenceFedorov VB, Goropashnaya AV, Jaarola M, Cook JA ( 2003 ) Phylogeography of lemmings ( Lemmus ): no evidence for postglacial colonization of Arctic from the Beringian refugium. Molecular Ecology, 12, 725 – 731.en_US
dc.identifier.citedreferenceFerchaud A, Lyet A, Cheylan M et al. ( 2010 ) High genetic differentiation among French populations of the Orsini's viper ( Vipera ursinii ursinii ) based on mitochondrial and microsatellite data: implications for conservation management. Journal of Heredity, 102, 67 – 78.en_US
dc.identifier.citedreferenceFranken RJ ( 2002 ) Demography and metapopulation dynamics of collared pikas (Ochotona collaris) in the southwest Yukon. Master's Thesis, University of Alberta, Edmonton, Alberta.en_US
dc.identifier.citedreferenceFranken RJ, Hik DS ( 2004 ) Influence of habitat quality, patch size and connectivity on colonization and extinction dynamics of collared pikas Ochotona collaris. Journal of Animal Ecology, 73, 889 – 896.en_US
dc.identifier.citedreferenceGalbreath KE, Hoberg EP ( 2012 ) Return to Beringia: parasites reveal cryptic biogeographic history of North American pikas. Proceedings of the Royal Society B, Biological Sciences, 279, 371 – 378.en_US
dc.identifier.citedreferenceGalbreath KE, Hafter DJ, Zamudio KR ( 2009 ) When cold is better: climate‐driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American Pika, Ochotona princeps ). Evolution, 63, 2848 – 2863.en_US
dc.identifier.citedreferenceGalbreath KE, Cook JA, Eddingsaas AA, DeChaine EG ( 2011 ) Diversity and demography in Beringia: multilocus tests of paleodistribution models reveal the complex history of Arctic ground squirrels. Evolution, 65, 1879 – 1896.en_US
dc.identifier.citedreferenceGao H, Williamson S, Bustamante CD ( 2007 ) A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics, 176, 1635 – 1651.en_US
dc.identifier.citedreferenceGuindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O ( 2010 ) New algorithms and methods to estimate maximum‐likelihood phylogenies: assessing the PhyML 3.0. Systematic Biology, 59, 307 – 321.en_US
dc.identifier.citedreferenceGuthrie RD ( 1973 ) Mummified pika ( Ochotona ) carcass and dung pellets from Pleistocene deposits in interior Alaska. Journal of Mammalogy, 54, 970 – 971.en_US
dc.identifier.citedreferenceHarrington CR ( 2011 ) Pleistocene vertebrates of the Yukon Territory. Quaternary Science Reviews, 30, 2341 – 2354.en_US
dc.identifier.citedreferenceHartl DL, Clark AG ( 2006 ) Principles of Population Genetics, 4th edn. Sinauer Associates, Sunderland, Massachusetts.en_US
dc.identifier.citedreferenceHe Q, Edwards D, Knowles LL ( 2013 ) Integrative testing of how environments from the past to the present shape genetic structure across landscapes. Evolution, 67, 3386 – 3402.en_US
dc.identifier.citedreferenceHenry P, Sim Z, Russello MA ( 2012 ) Genetic evidence for restricted dispersal along continuous altitudinal gradients in a climate change‐sensitive mammal: the American Pika. PLoS ONE, 7, e39077.en_US
dc.identifier.citedreferenceHewitt GM ( 2004 ) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B, 359, 183 – 195.en_US
dc.identifier.citedreferenceHijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A ( 2005 ) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965 – 1978.en_US
dc.identifier.citedreferenceHohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA ( 2010 ) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genetics, 6, e1000862.en_US
dc.identifier.citedreferenceHohenlohe PA, Catchen J, Cresko WA ( 2012 ) Population genomic analysis of model and nonmodel organisms using sequenced RAD tags. Methods in Molecular Biology, 888, 235 – 260.en_US
dc.identifier.citedreferenceHolsinger KE, Weir BS ( 2009 ) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nature Reviews Genetics, 10, 639 – 650.en_US
dc.identifier.citedreferenceHorn HL ( 2013 ) The role of habitat quality and climate in the dynamics of occupancy and survival of a population of collared pikas (Ochotona collaris) in the Ruby Range, Yukon Territory. Master's Thesis, University of Alberta, Edmonton, Alberta.en_US
dc.identifier.citedreferenceJeffress MR, Rodhouse TJ, Ray C, Wolff S, Epps CW ( 2013 ) The idiosyncrasies of place: geographic variation in the climate‐distribution relationships of the American pika. Ecological Applications, 23, 864 – 878.en_US
dc.identifier.citedreferenceJombart T ( 2008 ) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403 – 1405.en_US
dc.identifier.citedreferenceJombart T, Pontier D, Dufour AB ( 2009 ) Genetic markers in the playground of multivariate analysis. Heredity, 102, 330 – 341.en_US
dc.identifier.citedreferenceLanier HL, Olson LE ( 2009 ) Inferring divergence times within pikas (Ochotona spp.) using mtDNA and relaxed molecular dating techniques. Molecular Phylogenetics and Evolution, 53, 1 – 12.en_US
dc.identifier.citedreferenceLanier HL, Olson LE ( 2013 ) Deep barriers, shallow divergences: reduced phylogeographical structure in the collared pika (Mammalia: Lagomorpha: Ochotona collaris ). Journal of Biogeography, 40, 466 – 478.en_US
dc.identifier.citedreferenceLanier HC, Gunderson AM, Weksler M, Fedorov VB, Olson LE ( 2015 ) Comparative phylogeography highlights the double‐edged sword of climate change faced by arctic‐ and alpine‐adapted species. PLoS ONE, 10, e0118396.en_US
dc.identifier.citedreferenceLemay MA, Henry P, Lamb CT, Robson KM, Russello MA ( 2013 ) Novel genomic resources for a climate change sensitive mammal: characterization of the American pika transcriptome. BMC Genomics, 14, 311.en_US
dc.identifier.citedreferenceMacArthur RA, Wang LCH ( 1973 ) Physiology of thermoregulation in the pika, Ochotona princeps. Canadian Journal of Zoology, 51, 11 – 16.en_US
dc.identifier.citedreferenceMacDonald SO, Jones C ( 1987 ) Ochotona collaris. Mammalian Species, 281, 1 – 4.en_US
dc.identifier.citedreferenceMarr KL, Allen GA, Hebda RJ ( 2008 ) Refugia in the Cordilleran ice sheet of western North America: chloroplast DNA diversity in the Arctic‐alpine plant Oxyria digyna. Journal of Biogeography, 35, 1323 – 1334.en_US
dc.identifier.citedreferenceMassatti R, Knowles LL ( 2014 ) Microhabitat differences impact phylogeographic concordance of codistributed species: genomic evidence in montane sedges ( Carex L.) from the Rocky Mountains. Evolution, 10, 2833 – 2846.en_US
dc.identifier.citedreferenceMcIntire EJB, Hik DS ( 2002 ) Grazing history versus current grazing: leaf demography and compensatory growth of three alpine plants in response to a native herbivore ( Ochotona collaris ). Journal of Ecology, 90, 348 – 359.en_US
dc.identifier.citedreferenceMcRae BH ( 2006 ) Isolation by resistance. Evolution, 60, 1551 – 1561.en_US
dc.identifier.citedreferenceMillar CI, Westfall RD ( 2010 ) Distribution and climatic relationships of the American Pika ( Ochotona princeps ) in the Sierra Nevada and Western Great Basin, USA; periglacial landforms as refugia in warming climates. Arctic, Antarctic and Alpine Research, 42, 76 – 78.en_US
dc.identifier.citedreferenceMorrison SF, Hik DS ( 2007 ) Demographic analysis of a declining pika Ochotona collaris population: linking survival to broadscale climate patterns via spring snowmelt patterns. Journal of Animal Ecology, 76, 899 – 907.en_US
dc.identifier.citedreferenceMorrison SF, Pelchat G, Donahue A, Hik DS ( 2009 ) Influence of food hoarding behavior on the over‐winter survival of pikas in strongly seasonal environments. Oecologia, 159, 107 – 116.en_US
dc.identifier.citedreferenceMurray BM, Murray DF ( 1969 ) Notes on mammals in alpine areas of the northern St. Elias Mountains, Yukon Territory, and Alaska. Canadian Field‐Naturalist, 83, 331 – 338.en_US
dc.identifier.citedreferenceNagorsen DW, Keddie G ( 2000 ) Late Pleistocene mountain goats ( Oreamnos americanus ) from Vancouver Island: biogeographic implications. Journal of Mammalogy, 81, 666 – 675.en_US
dc.identifier.citedreferenceOksanen J, Blanchet FG, Kindt R et al. ( 2013 ) vegan: Community Ecology Package. R package version 2.0‐7. Available at http://CRAN.R-project.org/package=vegan.en_US
dc.identifier.citedreferencePalumbi SR, Barshis DJ, Traylor‐Knowles N, Bay RA ( 2014 ) Mechanisms of reef coral resistance to future climate change. Science, 344, 895 – 898.en_US
dc.identifier.citedreferencePeacock MM ( 1997 ) Determining natal dispersal patterns in a population of North American pikas ( Ochotona princeps ) using direct mark‐resight and indirect genetic methods. Behavioral Ecology, 8, 340 – 350.en_US
dc.identifier.citedreferencePeterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE ( 2012 ) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non‐model species. PLoS ONE, 7, e37135.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.