Show simple item record

Chemical feasibility of the general acid/base mechanism of glmS ribozyme self‐cleavage

dc.contributor.authorDubecký, Matúšen_US
dc.contributor.authorWalter, Nils G.en_US
dc.contributor.authorŠponer, Jiříen_US
dc.contributor.authorOtyepka, Michalen_US
dc.contributor.authorBanáš, Pavelen_US
dc.date.accessioned2015-08-05T16:47:17Z
dc.date.available2016-12-01T14:33:05Zen
dc.date.issued2015-10en_US
dc.identifier.citationDubecký, Matúš ; Walter, Nils G.; Šponer, Jiří ; Otyepka, Michal; Banáš, Pavel (2015). "Chemical feasibility of the general acid/base mechanism of glmS ribozyme selfâ cleavage." Biopolymers 103(10): 550-562.en_US
dc.identifier.issn0006-3525en_US
dc.identifier.issn1097-0282en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112240
dc.description.abstractIn numerous Gram‐positive bacteria, the glmS ribozyme or catalytic riboswitch regulates the expression of glucosamine‐6‐phosphate (GlcN6P) synthase via site‐specific cleavage of its sugar‐phosphate backbone in response to GlcN6P ligand binding. Biochemical data have suggested a crucial catalytic role for an active site guanine (G40 in Thermoanaerobacter tengcongensis, G33 in Bacillus anthracis). We used hybrid quantum chemical/molecular mechanical (QM/MM) calculations to probe the mechanism where G40 is deprotonated and acts as a general base. The calculations suggest that the deprotonated guanine G40− is sufficiently reactive to overcome the thermodynamic penalty arising from its rare protonation state, and thus is able to activate the A‐1(2′‐OH) group toward nucleophilic attack on the adjacent backbone. Furthermore, deprotonation of A‐1(2′‐OH) and nucleophilic attack are predicted to occur as separate steps, where activation of A‐1(2′‐OH) precedes nucleophilic attack. Conversely, the transition state associated with the rate‐determining step corresponds to concurrent nucleophilic attack and protonation of the G1(O5′) leaving group by the ammonium moiety of the GlcN6P cofactor. Overall, our calculations help to explain the crucial roles of G40 (as a general base) and GlcN6P (as a general acid) during glmS ribozyme self‐cleavage. In addition, we show that the QM/MM description of the glmS ribozyme self‐cleavage reaction is significantly more sensitive to the size of the QM region and the quality of the QM‐MM coupling than that of other small ribozymes. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 550–562, 2015.en_US
dc.publisherUniversity of Californiaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherribozymeen_US
dc.subject.otherRNA catalysisen_US
dc.subject.otherQM/MMen_US
dc.subject.otherriboswitchen_US
dc.subject.otherglmSen_US
dc.titleChemical feasibility of the general acid/base mechanism of glmS ribozyme self‐cleavageen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112240/1/bip22657.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112240/2/bip22657-sup-0004-suppinfo04.pdf
dc.identifier.doi10.1002/bip.22657en_US
dc.identifier.sourceBiopolymersen_US
dc.identifier.citedreferenceAqvist, J. J Phys Chem‐Us 1990, 94, 8021 – 8024.en_US
dc.identifier.citedreferenceHampel, K. J.; Tinsley, M. M. Biochemistry‐Us 2006, 45, 7861 – 7871.en_US
dc.identifier.citedreferenceMlynsky, V.; Kuhrova, P.; Zgarbova, M.; Jurecka, P.; Walter, N. G.; Otyepka, M.; Sponer, J.; Banas, P. J Phys Chem B, 2015, 119, 4220 – 4229.en_US
dc.identifier.citedreferenceCheatham, T. E.; Case, D. A. Biopolymers 2013, 99, 969 – 977.en_US
dc.identifier.citedreferenceSponer, J.; Banas, P.; Jurecka, P.; Zgarbova, M.; Kuhrova, P.; Havrila, M.; Krepl, M.; Stadlbauer, P.; Otyepka, M. J Phys Chem Lett 2014, 5, 1771 – 1782.en_US
dc.identifier.citedreferenceCase, D. A.; Babin, V.; Berryman, J. T.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham III, T. E.; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T. S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K. M.; Paesani, F.; Roe, D. R.; Roitberg, A.; Sagui, C.; Salomon‐Ferrer, R.; Seabra, G.; Simmerling, C. L.; Smith, W.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Kollman, P. A. AMBER 12; University of California: San Francisco, 2014..en_US
dc.identifier.citedreferenceSalomon‐Ferrer, R.; Gotz, A. W.; Poole, D.; Le Grand, S.; Walker, R. C. J Chem Theory Comput 2013, 9, 3878 – 3888.en_US
dc.identifier.citedreferenceBayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J Phys Chem‐Us 1993, 97, 10269 – 10280.en_US
dc.identifier.citedreferenceCornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J Am Chem Soc 1996, 118, 2309 – 2309.en_US
dc.identifier.citedreferencePerez, A.; Marchan, I.; Svozil, D.; Sponer, J.; Cheatham, T. E.; Laughton, C. A.; Orozco, M. Biophys J 2007, 92, 3817 – 3829.en_US
dc.identifier.citedreferenceZgarbova, M.; Otyepka, M.; Sponer, J.; Mladek, A.; Banas, P.; Cheatham, T. E.; Jurecka, P. J Chem Theory Comput 2011, 7, 2886 – 2902.en_US
dc.identifier.citedreferenceBanas, P.; Hollas, D.; Zgarbova, M.; Jurecka, P.; Orozco, M.; Cheatham, T. E.; Sponer, J.; Otyepka, M. J Chem Theory Comput 2010, 6, 3836 – 3849.en_US
dc.identifier.citedreferenceJoung, I. S.; Cheatham, T. E. J Phys Chem B 2008, 112, 9020 – 9041.en_US
dc.identifier.citedreferenceFedor, M. J. Annu Rev Biophys 2009, 38, 271 – 299.en_US
dc.identifier.citedreferenceGresh, N.; Sponer, J. E.; Spackova, N.; Leszczynski, J.; Sponer, J. J Phys Chem B 2003, 107, 8669 – 8681.en_US
dc.identifier.citedreferenceBanas, P.; Jurecka, P.; Walter, N. G.; Sponer, J.; Otyepka, M. Methods 2009, 49, 202 – 216.en_US
dc.identifier.citedreferenceDitzler, M. A.; Otyepka, M.; Sponer, J.; Walter, N. G. Acc Chem Res 2010, 43, 40 – 47.en_US
dc.identifier.citedreferenceSvensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K. J Phys Chem‐Us 1996, 100, 19357 – 19363.en_US
dc.identifier.citedreferenceFrisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian09; Gaussian: Wallingford, CT, 2009.en_US
dc.identifier.citedreferenceSalahub, D. R.; de la Lande, A.; Goursot, A.; Zhang, R.; Zhang, Y. Struct Bond 2013, 150, 1 – 64.en_US
dc.identifier.citedreferenceLynch, B. J.; Truhlar, D. G. J Phys Chem A 2001, 105, 2936 – 2941.en_US
dc.identifier.citedreferenceLynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J Phys Chem A 2000, 104, 4811 – 4815.en_US
dc.identifier.citedreferenceMlynsky, V.; Banas, P.; Sponer, J.; van der Kamp, M. W.; Mulholland, A. J.; Otyepka, M. J Chem Theory Comput 2014, 10, 1608 – 1622.en_US
dc.identifier.citedreferenceZirbel, C. L.; Sponer, J. E.; Sponer, J.; Stombaugh, J.; Leontis, N. B. Nucleic Acids Res 2009, 37, 4898 – 4918.en_US
dc.identifier.citedreferenceBanas, P.; Rulisek, L.; Hanosova, V.; Svozil, D.; Walter, N. G.; Sponer, J.; Otyepka, M. J Phys Chem B 2008, 112, 11177 – 11187.en_US
dc.identifier.citedreferenceMlynsky, V.; Walter, N. G.; Sponer, J.; Otyepka, M.; Banas, P. Phys Chem Chem Phys 2015, 17, 670 – 679.en_US
dc.identifier.citedreferenceHu, L. H.; Soderhjelm, P.; Ryde, U. J Chem Theory Comput 2011, 7, 761 – 777.en_US
dc.identifier.citedreferenceVreven, T.; Byun, K. S.; Komaromi, I.; Dapprich, S.; Montgomery, J. A.; Morokuma, K.; Frisch, M. J. J Chem Theory Comput 2006, 2, 815 – 826.en_US
dc.identifier.citedreferenceZhang, S.; Ganguly, A.; Goyal, P.; Bingaman, J. L.; Bevilacqua, P. C.; Hammes‐Schiffer, S. J Am Chem Soc 2015, 137, 784 – 798.en_US
dc.identifier.citedreferenceBarrick, J. E.; Breaker, R. R. Genome Biol 2007, 8: R239.en_US
dc.identifier.citedreferenceBatey, R. T.; Gilbert, S. D.; Montange, R. K. Nature 2004, 432, 411 – 415.en_US
dc.identifier.citedreferenceCoppins, R. L.; Hall, K. B.; Groisman, E. A. Curr Opin Microbiol 2007, 10, 176 – 181.en_US
dc.identifier.citedreferenceCorbino, K. A.; Barrick, J. E.; Lim, J.; Welz, R.; Tucker, B. J.; Puskarz, I.; Mandal, M.; Rudnick, N. D.; Breaker, R. R. Genome Biol 2005, 6.en_US
dc.identifier.citedreferenceGrundy, F. J.; Henkin, T. M. Crit Rev Biochem Mol 2006, 41, 329 – 338.en_US
dc.identifier.citedreferenceHenkin, T. M. Gene Dev 2008, 22, 3383 – 3390.en_US
dc.identifier.citedreferenceMandal, M.; Boese, B.; Barrick, J. E.; Winkler, W. C.; Breaker, R. R. Cell 2003, 113, 577 – 586.en_US
dc.identifier.citedreferenceTucker, B. J.; Breaker, R. R. Curr Opin Struct Biol 2005, 15, 342 – 348.en_US
dc.identifier.citedreferenceWinkler, W. C. Curr Opin Chem Biol 2005, 9, 594 – 602.en_US
dc.identifier.citedreferenceWinkler, W. C.; Breaker, R. R. Annu Rev Microbiol 2005, 59, 487 – 517.en_US
dc.identifier.citedreferenceDeigan, K. E.; Ferre‐D'Amare, A. R. Acc Chem Res 2011, 44, 1329 – 1338.en_US
dc.identifier.citedreferenceBlount, K. F.; Breaker, R. R. Nat Biotechnol 2006, 24, 1558 – 1564.en_US
dc.identifier.citedreferenceBarrick, J. E.; Corbino, K. A.; Winkler, W. C.; Nahvi, A.; Mandal, M.; Collins, J.; Lee, M.; Roth, A.; Sudarsan, N.; Jona, I.; Wickiser, J. K.; Breaker, R. R. Proc Natl Acad Sci USA 2004, 101, 6421 – 6426.en_US
dc.identifier.citedreferenceWinkler, W. C.; Nahvi, A.; Roth, A.; Collins, J. A.; Breaker, R. R. Nature 2004, 428, 281 – 286.en_US
dc.identifier.citedreferenceMilewski, S. Bba‐Protein Struct M 2002, 1597, 173 – 192.en_US
dc.identifier.citedreferenceTinsley, R. A.; Furchak, J. R. W.; Walter, N. G. RNA 2007, 13, 468 – 477.en_US
dc.identifier.citedreferenceMcCarthy, T. J.; Plog, M. A.; Floy, S. A.; Jansen, J. A.; Soukup, J. K.; Soukup, G. A. Chem Biol 2005, 12, 1221 – 1226.en_US
dc.identifier.citedreferenceCollins, J. A.; Irnov, I.; Baker, S.; Winkler, W. C. Gene Dev 2007, 21, 3356 – 3368.en_US
dc.identifier.citedreferenceLau, M. W. L.; Ferre‐D'Amare, A. R. Nat Chem Biol 2013, 9, 805 ‐+.en_US
dc.identifier.citedreferenceBevilacqua, P. C.; Yajima, R. Curr Opin Chem Biol 2006, 10, 455 – 464.en_US
dc.identifier.citedreferenceLilley, D. M. J. Trends Biochem Sci 2003, 28, 495 – 501.en_US
dc.identifier.citedreferenceRoth, A.; Nahvi, A.; Lee, M.; Jona, I.; Breaker, R. R. RNA 2006, 12, 607 – 619.en_US
dc.identifier.citedreferenceGong, B.; Klein, D. J.; Ferre‐D'Amare, A. R.; Carey, P. R. J Am Chem Soc 2011, 133, 14188 – 14191.en_US
dc.identifier.citedreferenceViladoms, J.; Fedor, M. J. J Am Chem Soc 2012, 134, 19043 – 19049.en_US
dc.identifier.citedreferenceDavis, J. H.; Dunican, B. F.; Strobel, S. A. Biochemistry‐Us 2011, 50, 7236 – 7242.en_US
dc.identifier.citedreferenceXin, Y.; Hamelberg, D. RNA 2010, 16, 2455 – 2463.en_US
dc.identifier.citedreferenceViladoms, J.; Scott, L. G.; Fedor, M. J. J Am Chem Soc 2011, 133, 18388 – 18396.en_US
dc.identifier.citedreferenceBrooks, K. M.; Hampel, K. J. Biochemistry‐Us 2011, 50, 2424 – 2433.en_US
dc.identifier.citedreferenceKlein, D. J.; Been, M. D.; Ferre‐D'Amare, A. R. J Am Chem Soc 2007, 129, 14858 – 14859.en_US
dc.identifier.citedreferenceKlein, D. J.; Wilkinson, S. R.; Been, M. D.; Ferre‐D'Amare, A. R. J Mol Biol 2007, 373, 178 – 189.en_US
dc.identifier.citedreferenceKlein, D. J.; Ferre‐D'Amare, A. R. Science 2006, 313, 1752 – 1756.en_US
dc.identifier.citedreferenceCochrane, J. C.; Lipchock, S. V.; Strobel, S. A. Chem Biol 2007, 14, 97 – 105.en_US
dc.identifier.citedreferenceCochrane, J. C.; Strobel, S. A. Acc Chem Res 2008, 41, 1027 – 1035.en_US
dc.identifier.citedreferenceBanas, P.; Walter, N. G.; Sponer, J.; Otyepka, M. J Phys Chem B 2010, 114, 8701 – 8712.en_US
dc.identifier.citedreferenceSripathi, K. N.; Tay, W. W.; Banas, P.; Otyepka, M.; Poner, J. S.; Walter, N. S. RNA 2014, 20, 1112 – 1128.en_US
dc.identifier.citedreferenceMlynsky, V.; Banas, P.; Hollas, D.; Reblova, K.; Walter, N. G.; Sponer, J.; Otyepka, M. J Phys Chem B 2010, 114, 6642 – 6652.en_US
dc.identifier.citedreferenceMlynsky, V.; Banas, P.; Walter, N. G.; Sponer, J.; Otyepka, M. J Phys Chem B 2011, 115, 13911 – 13924.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.