Show simple item record

Objective Estimates Improve Risk Stratification for Primary Graft Dysfunction after Lung Transplantation

dc.contributor.authorShah, R. J.en_US
dc.contributor.authorDiamond, J. M.en_US
dc.contributor.authorCantu, E.en_US
dc.contributor.authorFlesch, J.en_US
dc.contributor.authorLee, J. C.en_US
dc.contributor.authorLederer, D. J.en_US
dc.contributor.authorLama, V. N.en_US
dc.contributor.authorOrens, J.en_US
dc.contributor.authorWeinacker, A.en_US
dc.contributor.authorWilkes, D. S.en_US
dc.contributor.authorRoe, D.en_US
dc.contributor.authorBhorade, S.en_US
dc.contributor.authorWille, K. M.en_US
dc.contributor.authorWare, L. B.en_US
dc.contributor.authorPalmer, S. M.en_US
dc.contributor.authorCrespo, M.en_US
dc.contributor.authorDemissie, E.en_US
dc.contributor.authorSonnet, J.en_US
dc.contributor.authorShah, A.en_US
dc.contributor.authorKawut, S. M.en_US
dc.contributor.authorBellamy, S. L.en_US
dc.contributor.authorLocalio, A. R.en_US
dc.contributor.authorChristie, J. D.en_US
dc.date.accessioned2015-08-05T16:47:19Z
dc.date.available2016-09-06T15:43:59Zen
dc.date.issued2015-08en_US
dc.identifier.citationShah, R. J.; Diamond, J. M.; Cantu, E.; Flesch, J.; Lee, J. C.; Lederer, D. J.; Lama, V. N.; Orens, J.; Weinacker, A.; Wilkes, D. S.; Roe, D.; Bhorade, S.; Wille, K. M.; Ware, L. B.; Palmer, S. M.; Crespo, M.; Demissie, E.; Sonnet, J.; Shah, A.; Kawut, S. M.; Bellamy, S. L.; Localio, A. R.; Christie, J. D. (2015). "Objective Estimates Improve Risk Stratification for Primary Graft Dysfunction after Lung Transplantation." American Journal of Transplantation 15(8): 2188-2196.en_US
dc.identifier.issn1600-6135en_US
dc.identifier.issn1600-6143en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112244
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherclinical research / practiceen_US
dc.subject.otherlung transplantation / pulmonologyen_US
dc.subject.otherlung (allograft) function / dysfunctionen_US
dc.subject.otherlung failure / injuryen_US
dc.titleObjective Estimates Improve Risk Stratification for Primary Graft Dysfunction after Lung Transplantationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112244/1/ajt13262.pdf
dc.identifier.doi10.1111/ajt.13262en_US
dc.identifier.sourceAmerican Journal of Transplantationen_US
dc.identifier.citedreferenceChristie JD, Kotloff RM, Pochettino A, et al. Clinical risk factors for primary graft failure following lung transplantation. Chest 2003; 124: 1232 – 1241.en_US
dc.identifier.citedreferenceChristie JD, Carby M, Bag R, et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part II: Definition. A consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2005; 24: 1454 – 1459.en_US
dc.identifier.citedreferenceCalfee CS, Matthay MA, Eisner MD, et al. Active and passive cigarette smoking and acute lung injury after severe blunt trauma. Am J Respir Crit Care Med 2011; 183: 1660 – 1665.en_US
dc.identifier.citedreferenceShigemura N, Toyoda Y, Bhama JK, et al. Donor smoking history and age in lung transplantation: A revisit. Transplantation 2013; 95: 513 – 518.en_US
dc.identifier.citedreferenceBonser RS, Taylor R, Collett D, et al. Effect of donor smoking on survival after lung transplantation: A cohort study of a prospective registry. Lancet 2012; 380: 747 – 755.en_US
dc.identifier.citedreferenceVickers AJ, Elkin EB. Decision curve analysis: A novel method for evaluating prediction models. Med Decis Making 2006; 26: 565 – 574.en_US
dc.identifier.citedreferenceMoons KG, Donders RA, Stijnen T, Harrell FE, Jr. Using the outcome for imputation of missing predictor values was preferred. J Clin Epidemiol 2006; 59: 1092 – 1101.en_US
dc.identifier.citedreferencevan Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res 2007. 16: 219 – 242.en_US
dc.identifier.citedreferenceObesity: Preventing and managing the global epidemic. Report of a WHO consultation World Health Organization technical report series 2000; 894: 1 – 253.en_US
dc.identifier.citedreferenceShah RJ, Diamond JM, Cantu E, et al. Latent class analysis identifies distinct phenotypes of primary graft dysfunction after lung transplantation. Chest 2013; 144: 616 – 622.en_US
dc.identifier.citedreferenceChristie JD, Bellamy S, Ware LB, et al. Construct validity of the definition of primary graft dysfunction after lung transplantation. J Heart Lung Transplant 2010; 29: 1231 – 1239.en_US
dc.identifier.citedreferenceChristie JD, Bavaria JE, Palevsky HI, et al. Primary graft failure following lung transplantation. Chest 1998; 114: 51 – 60.en_US
dc.identifier.citedreferenceChristie JD, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart‐lung transplant report‐2012. J Heart Lung Transplant 2012; 31: 1073 – 1086.en_US
dc.identifier.citedreferenceDiamond JM, Lee JC, Kawut SM, et al. Clinical risk factors for primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 2013; 187: 527 – 534.en_US
dc.identifier.citedreferenceDaud SA, Yusen RD, Meyers BF, et al. Impact of immediate primary lung allograft dysfunction on bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2006; 175: 507 – 513.en_US
dc.identifier.citedreferenceChristie JD, Kotloff RM, Ahya VN, et al. The effect of primary graft dysfunction on survival after lung transplantation. Am J Respir Crit Care Med 2005; 171: 1312 – 1316.en_US
dc.identifier.citedreferenceCovarrubias M, Ware LB, Kawut SM, et al. Plasma intercellular adhesion molecule‐1 and von Willebrand factor in primary graft dysfunction after lung transplantation. Am J Transplant 2007; 7: 2573 – 2578.en_US
dc.identifier.citedreferenceChristie JD, Shah CV, Kawut SM, et al. Plasma levels of receptor for advanced glycation end products, blood transfusion, and risk of primary graft dysfunction. Am J Respir Crit Care Med 2009; 180: 1010 – 1015.en_US
dc.identifier.citedreferenceChristie JD, Robinson N, Ware LB, et al. Association of protein C and type 1 plasminogen activator inhibitor with primary graft dysfunction. Am J Respir Crit Care Med 1899; 175: 69 – 74.en_US
dc.identifier.citedreferenceDiamond JM, Kawut SM, Lederer DJ, et al. Elevated plasma clara cell secretory protein concentration is associated with high‐grade primary graft dysfunction. Am J Transplant 2011; 11: 561 – 567.en_US
dc.identifier.citedreferenceLederer DJ, Kawut SM, Wickersham N, et al. Obesity and primary graft dysfunction after lung transplantation: The Lung Transplant Outcomes Group Obesity Study. Am J Respir Crit Care Med 2011; 184: 1055 – 1061.en_US
dc.identifier.citedreferencePires‐Neto RC, Morales MMB, Lancas T, et al. Expression of acute‐phase cytokines, surfactant proteins, and epithelial apoptosis in small airways of human acute respiratory distress syndrome. J Crit Care 2013; 28.en_US
dc.identifier.citedreferenceFang A, Studer S, Kawut SM, et al. Elevated pulmonary artery pressure is a risk factor for primary graft dysfunction following lung transplantation for idiopathic pulmonary fibrosis. Chest 2011; 139: 782 – 787.en_US
dc.identifier.citedreferenceHosmer DW, Lemeshow S. Applied logistic regression. 3rd ed. Malden, MA: Wiley‐Interscience; 2000.en_US
dc.identifier.citedreferenceGraubard BI, Korn EL. Predictive margins with survey data. Biometrics 1999; 55: 652 – 659.en_US
dc.identifier.citedreferenceLederer DJ, Wilt JS, D'Ovidio F, et al. Obesity and underweight are associated with an increased risk of death after lung transplantation. Am J Respir Crit Care Med 2009; 180: 887 – 895.en_US
dc.identifier.citedreferenceGreenland S. The need for reorientation toward cost‐effective prediction: Comments on “Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond” by M. J. Pencina et al, Statistics in Medicine (DOI: 10.1002/sim.2929). Stat Med 2008; 27: 199 – 206.en_US
dc.identifier.citedreferenceEfron B, Tibshirani R. Improvements on Cross‐validation: The 632+ bootstrap method. J Am Stat Assoc 1997; 92: 548 – 560.en_US
dc.identifier.citedreferenceDiamond JM, Lee JC, Kawut SM, et al. Clinical risk factors for primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 2013; 1: 527 – 534.en_US
dc.identifier.citedreferenceWhite IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med 2011; 30: 377 – 399.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.