Show simple item record

Microwave Enabled One‐Pot, One‐Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications

dc.contributor.authorPatel, Mehulkumaren_US
dc.contributor.authorFeng, Wenchunen_US
dc.contributor.authorSavaram, Keerthien_US
dc.contributor.authorKhoshi, M. Rezaen_US
dc.contributor.authorHuang, Ruimingen_US
dc.contributor.authorSun, Jingen_US
dc.contributor.authorRabie, Emannen_US
dc.contributor.authorFlach, Carolen_US
dc.contributor.authorMendelsohn, Richarden_US
dc.contributor.authorGarfunkel, Ericen_US
dc.contributor.authorHe, Huixinen_US
dc.date.accessioned2015-08-05T16:47:20Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationPatel, Mehulkumar; Feng, Wenchun; Savaram, Keerthi; Khoshi, M. Reza; Huang, Ruiming; Sun, Jing; Rabie, Emann; Flach, Carol; Mendelsohn, Richard; Garfunkel, Eric; He, Huixin (2015). "Microwave Enabled One‐Pot, One‐Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications." Small 11(27): 3358-3368.en_US
dc.identifier.issn1613-6810en_US
dc.identifier.issn1613-6829en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112245
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherMcGraw Hill Higher Educationen_US
dc.subject.othergraphene oxideen_US
dc.subject.otherheteroatom dopingen_US
dc.subject.otherholey graphene sheetsen_US
dc.subject.othermicrowave irradiationen_US
dc.subject.otheroxygen reduction reactionen_US
dc.titleMicrowave Enabled One‐Pot, One‐Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applicationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112245/1/smll201403402-sup-0001-S1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112245/2/smll201403402.pdf
dc.identifier.doi10.1002/smll.201403402en_US
dc.identifier.sourceSmallen_US
dc.identifier.citedreferenceJ.‐L. Li, K. N. Kudin, M. J. McAllister, R. K. Prud'homme, I. A. Aksay, R. Car, Phys. Rev. Lett. 2006, 96, 176101.en_US
dc.identifier.citedreferenceZ. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, X. H. Xia, ACS Nano 2011, 5, 4350.en_US
dc.identifier.citedreferenceZ. Q. Jiang, Z. J. Jiang, X. N. Tian, W. H. Chen, J. Mater. Chem. A 2014, 2, 441.en_US
dc.identifier.citedreferenceM. A. Patel, H. Yang, P. L. Chiu, D. D. Mastrogiovanni, C. R. Flach, K. Savaram, L. Gomez, A. Hemnarine, R. Mendelsohn, E. Garfunkel, H. Jiang, H. He, ACS Nano 2013, 7, 8147.en_US
dc.identifier.citedreferenceD. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 2009, 458, 872.en_US
dc.identifier.citedreferenceS. H. Aboutalebi, R. Jalili, D. Esrafilzadeh, M. Salari, Z. Gholamvand, S. Aminorroaya Yamini, K. Konstantinov, R. L. Shepherd, J. Chen, S. E. Moulton, ACS Nano 2014, 8, 2456.en_US
dc.identifier.citedreferenceA. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, V. B. Shenoy, Nat. Chem. 2010, 2, 581.en_US
dc.identifier.citedreferenceA. M. Dimiev, J. M. Tour, ACS Nano 2014, 8, 3060.en_US
dc.identifier.citedreferenceK. J. Ziegler, Z. Gu, H. Peng, E. L. Flor, R. H. Hauge, R. E. Smalley, J. Am. Chem. Soc. 2005, 127, 1541.en_US
dc.identifier.citedreferenceJ. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez‐Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science 1998, 280, 1253.en_US
dc.identifier.citedreferenceZ. Y. Chen, K. Kobashi, U. Rauwald, R. Booker, H. Fan, W. F. Hwang, J. M. Tour, J. Am. Chem. Soc. 2006, 128, 10568.en_US
dc.identifier.citedreferenceT. Sun, S. Fabris, Nano Lett. 2012, 12, 17.en_US
dc.identifier.citedreferenceZ. Y. Li, W. H. Zhang, Y. Luo, J. L. Yang, J. G. Hou, J. Am. Chem. Soc. 2009, 131, 6320.en_US
dc.identifier.citedreferenceP. Tang, G. Hu, Y. Gao, W. Li, S. Yao, Z. Liu, D. Ma, Sci. Rep. 2014, 4, 5901.en_US
dc.identifier.citedreferenceY. Zhang, K. Fugane, T. Mori, L. Niu, J. Ye, J. Mater. Chem. 2012, 22, 6575.en_US
dc.identifier.citedreferenceL. F. Lai, J. R. Potts, D. Zhan, L. Wang, C. K. Poh, C. H. Tang, H. Gong, Z. X. Shen, L. Y. Jianyi, R. S. Ruoff, Energy Environ. Sci. 2012, 5, 7936.en_US
dc.identifier.citedreferenceY. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394.en_US
dc.identifier.citedreferenceY. Sun, C. Li, G. Shi, J. Mater. Chem. 2012, 22, 12810.en_US
dc.identifier.citedreferenceX.‐K. Kong, C. L. Chen, Q. W. Chen, Chem. Soc. Rev. 2014, 43, 2841.en_US
dc.identifier.citedreferenceS. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Chem. Rev. 2014, 114, 6179.en_US
dc.identifier.citedreferenceK. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760.en_US
dc.identifier.citedreferenceK. A. Kurak, A. B. Anderson, J. Phys. Chem. C 2009, 113, 6730.en_US
dc.identifier.citedreferenceC. V. Rao, C. R. Cabrera, Y. Ishikawa, J. Phys. Chem. Lett. 2010, 1, 2622.en_US
dc.identifier.citedreferenceL. P. Zhang, Z. H. Xia, J. Phys. Chem. C 2011, 115, 11170.en_US
dc.identifier.citedreferenceX. Y. Peng, X. X. Liu, D. Diamond, K. T. Lau, Carbon 2011, 49, 3488.en_US
dc.identifier.citedreferenceS. Y. Wang, D. S. Yu, L. M. Dai, D. W. Chang, J. B. Baek, ACS Nano 2011, 5, 6202.en_US
dc.identifier.citedreferenceZ. Lin, G. Waller, Y. Liu, M. Liu, C. P. Wong, Adv. Energy Mater. 2012, 2, 884.en_US
dc.identifier.citedreferenceR. Liu, D. Wu, X. Feng, K. Mullen, Angew. Chem. 2010, 49, 2565.en_US
dc.identifier.citedreferenceK. Moses, V. Kiran, S. Sampath, C. N. Rao, Chem. Asian J. 2014, 9, 838.en_US
dc.identifier.citedreferenceY. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S. Z. Qiao, Angew. Chem. 2013, 52, 3110.en_US
dc.identifier.citedreferenceY. Zhang, Q. H. Huang, Z. Q. Zou, J. F. Yang, W. Vogel, H. Yang, J. Phys. Chem. C 2010, 114, 6860.en_US
dc.identifier.citedreferenceH. S. Chen, T. N. Cong, W. Yang, C. Q. Tan, Y. L. Li, Y. L. Ding, Prog. Nat. Sci. 2009, 19, 291.en_US
dc.identifier.citedreferenceS. Chu, A. Majumdar, Nature 2012, 488, 294.en_US
dc.identifier.citedreferenceD. Linden, Handbook of Batteries and Fuel Cells, McGraw Hill Higher Education, New York 1984.en_US
dc.identifier.citedreferenceD. S. Yu, E. Nagelli, F. Du, L. M. Dai, J. Phys. Chem. Lett. 2010, 1, 2165.en_US
dc.identifier.citedreferenceR. L. Liu, D. Q. Wu, X. L. Feng, K. Mullen, Angew. Chem., Int. Ed. 2010, 49, 2565.en_US
dc.identifier.citedreferenceL. T. Qu, Y. Liu, J. B. Baek, L. M. Dai, ACS Nano 2010, 4, 1321.en_US
dc.identifier.citedreferenceK. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science 2009, 323, 760.en_US
dc.identifier.citedreferenceR. I. Jafri, N. Rajalakshmi, S. Ramaprabhu, J. Power Sources 2010, 195, 8080.en_US
dc.identifier.citedreferenceT. C. Nagaiah, S. Kundu, M. Bron, M. Muhler, W. Schuhmann, Electrochem. Commun. 2010, 12, 338.en_US
dc.identifier.citedreferenceR. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, R. R. Nair, Science 2014, 343, 752.en_US
dc.identifier.citedreferenceJ. Bai, X. Zhong, S. Jiang, Y. Huang, X. Duan, Nat. Nanotechnol. 2010, 5, 190.en_US
dc.identifier.citedreferenceP. Kuhn, A. Forget, D. Su, A. Thomas, M. Antonietti, J. Am. Chem. Soc. 2008, 130, 13333.en_US
dc.identifier.citedreferenceM. Bieri, M. Treier, J. Cai, K. Ait‐Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Mullen, R. Fasel, Chem. Commun. 2009, 45, 6919.en_US
dc.identifier.citedreferenceO. Akhavan, ACS Nano 2010, 4, 4174.en_US
dc.identifier.citedreferenceM. D. Fischbein, M. Drndic, Appl. Phys. Lett. 2008, 93, 113107.en_US
dc.identifier.citedreferenceY. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.en_US
dc.identifier.citedreferenceS. Wang, F. Tristan, D. Minami, T. Fujimori, R. Cruz‐Silva, M. Terrones, K. Takeuchi, K. Teshima, F. Rodríguez‐Reinoso, M. Endo, Carbon 2014, 76, 220.en_US
dc.identifier.citedreferenceX. Zhao, C. M. Hayner, M. C. Kung, H. H. Kung, ACS Nano 2011, 5, 8739.en_US
dc.identifier.citedreferenceX. Wang, L. Jiao, K. Sheng, C. Li, L. Dai, G. Shi, Sci. Rep. 2013, 3, 1996.en_US
dc.identifier.citedreferenceT. H. Han, Y. K. Huang, A. T. Tan, V. P. Dravid, J. Huang, J. Am. Chem. Soc. 2011, 133, 15264.en_US
dc.identifier.citedreferenceY. Zhao, C. Hu, L. Song, L. Wang, G. Shi, L. Dai, L. Qu, Energy Environ. Sci. 2014, 7, 1913.en_US
dc.identifier.citedreferenceY. Lin, K. A. Watson, J.‐W. Kim, D. W. Baggett, D. C. Working, J. W. Connell, Nanoscale 2013, 5, 7814.en_US
dc.identifier.citedreferenceD. Zhou, Y. Cui, P.‐W. Xiao, M.‐Y. Jiang, B.‐H. Han, Nat. Commun. 2014, 5, 4716.en_US
dc.identifier.citedreferenceX. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 2009, 131, 15939.en_US
dc.identifier.citedreferenceY. Xue, D. Yu, L. Dai, R. Wang, D. Li, A. Roy, F. Lu, H. Chen, Y. Liu, J. Qu, Phys. Chem. Chem. Phys. 2013, 15, 12220.en_US
dc.identifier.citedreferenceC. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Adv. Mater. 2013, 25, 4932.en_US
dc.identifier.citedreferenceH. Wang, Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, Z. Liu, Small 2013, 9, 1316.en_US
dc.identifier.citedreferenceH. B. Wang, M. S. Xie, L. Thia, A. Fisher, X. Wang, J. Phys. Chem. Lett. 2014, 5, 119.en_US
dc.identifier.citedreferenceH. B. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2012, 2, 781.en_US
dc.identifier.citedreferenceT. Hu, X. Sun, H. Sun, G. Xin, D. Shao, C. Liu, J. Lian, Phys. Chem. Chem. Phys. 2014, 16, 1060.en_US
dc.identifier.citedreferenceD. W. Chang, E. K. Lee, E. Y. Park, H. Yu, H. J. Choi, I. Y. Jeon, G. J. Sohn, D. Shin, N. Park, J. H. Oh, L. Dai, J. B. Baek, J. Am. Chem. Soc. 2013, 135, 8981.en_US
dc.identifier.citedreferenceY. Y. Shao, S. Zhang, M. H. Engelhard, G. S. Li, G. C. Shao, Y. Wang, J. Liu, I. A. Aksay, Y. H. Lin, J. Mater. Chem. 2010, 20, 7491.en_US
dc.identifier.citedreferenceZ. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. a. Chen, S. Huang, ACS Nano 2011, 6, 205.en_US
dc.identifier.citedreferenceB. Zhang, Z. Wen, S. Ci, S. Mao, J. Chen, Z. He, ACS Appl. Mater. Interfaces 2014, 6, 7464.en_US
dc.identifier.citedreferenceL. Chen, R. Du, J. Zhu, Y. Mao, C. Xue, N. Zhang, Y. Hou, J. Zhang, T. Yi, Small, DOI 10.1002/smll.201402472.en_US
dc.identifier.citedreferenceZ. S. Wu, W. C. Ren, L. Xu, F. Li, H. M. Cheng, ACS Nano 2011, 5, 5463.en_US
dc.identifier.citedreferenceL. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, C. Rao, Adv. Mater. 2009, 21, 4726.en_US
dc.identifier.citedreferenceA. L. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, P. M. Ajayan, ACS Nano 2010, 4, 6337.en_US
dc.identifier.citedreferenceD. H. Deng, X. L. Pan, L. A. Yu, Y. Cui, Y. P. Jiang, J. Qi, W. X. Li, Q. A. Fu, X. C. Ma, Q. K. Xue, G. Q. Sun, X. H. Bao, Chem. Mater. 2011, 23, 1188.en_US
dc.identifier.citedreferenceX. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, H. J. Dai, Science 2009, 324, 768.en_US
dc.identifier.citedreferenceH. L. Guo, P. Su, X. F. Kang, S. K. Ning, J. Mater. Chem. A 2013, 1, 2248.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.