Show simple item record

Palladium‐Catalyzed Alkene Carboamination Reactions of Electron‐Poor Nitrogen Nucleophiles

dc.contributor.authorPeterson, Luke J.en_US
dc.contributor.authorWolfe, John P.en_US
dc.date.accessioned2015-08-05T16:47:22Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07-06en_US
dc.identifier.citationPeterson, Luke J.; Wolfe, John P. (2015). "Palladium‐Catalyzed Alkene Carboamination Reactions of Electron‐Poor Nitrogen Nucleophiles." Advanced Synthesis & Catalysis 357(10): 2339-2344.en_US
dc.identifier.issn1615-4150en_US
dc.identifier.issn1615-4169en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112250
dc.description.abstractModified reaction conditions that facilitate Pd‐catalyzed alkene carboamination reactions of electron‐deficient nitrogen nucleophiles are reported. Pent‐4‐enylamine derivatives bearing N‐tosyl or N‐trifluoroacetyl groups are coupled with aryl triflates to afford substituted pyrrolidines in good yield. These reactions proceed via a mechanism involving anti‐aminopalladation of the alkene, which differs from previously reported analogous reactions of N‐aryl‐ and N‐Boc‐pentenylamines. The application of these conditions to a formal synthesis of (±)‐aphanorphine is also described.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherpalladiumen_US
dc.subject.otheralkenesen_US
dc.subject.otheraryl halidesen_US
dc.subject.otherheterocyclesen_US
dc.titlePalladium‐Catalyzed Alkene Carboamination Reactions of Electron‐Poor Nitrogen Nucleophilesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Department of Chemistry, 930 N. University Ave., Ann Arbor, MI, 48109‐1055, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112250/1/2339_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112250/2/adsc_201500334_sm_miscellaneous_information.pdf
dc.identifier.doi10.1002/adsc.201500334en_US
dc.identifier.sourceAdvanced Synthesis & Catalysisen_US
dc.identifier.citedreferenceG. Liu, S. S. Stahl, J. Am. Chem. Soc. 2007, 129, 6328 – 6335;en_US
dc.identifier.citedreferenceB. J. Casavant, A. S. Hosseini, S. R. Chemler, Adv. Synth. Catal. 2014, 356, 2697 – 2702.en_US
dc.identifier.citedreferenceD. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27 – 50;en_US
dc.identifier.citedreferenceD. S. Surry, S. L. Buchwald, Angew. Chem. 2008, 120, 6438 – 6461; Angew. Chem. Int. Ed. 2008, 47, 6338 – 6361.en_US
dc.identifier.citedreferenceC, Amatore, A. Jutand, J. Organomet. Chem. 1999, 576, 254 – 278.en_US
dc.identifier.citedreferenceOur prior studies have shown factors that facilitate generation of cationic palladium intermediates (such as polar solvents, non‐coordinating triflate ligands, and electron‐rich phosphine ligands) promote the anti ‐aminopalladation pathway. See ref. [8]en_US
dc.identifier.citedreferenceD. N. Mai, B. R. Rosen, J. P. Wolfe, Org. Lett. 2011, 13, 2932 – 2935.en_US
dc.identifier.citedreferenceWe have previously described the conversion of non‐racemic 12 to (+)‐aphanorphine via cleavage of the N ‐tosyl group, N ‐methylation, and O ‐demethylation. See ref. [12]en_US
dc.identifier.citedreferenceStahl has previously illustrated that bases, ligands, and oxidants influence syn ‐ vs. anti ‐aminopalladation pathways in Wacker‐type oxidative cyclizations of aminoalkenes. See:en_US
dc.identifier.citedreferenceL. Miao, I. Haque, M. R. Manzoni, W. S. Tham, S. R. Chemler, Org. Lett. 2010, 12, 4739 – 4741;en_US
dc.identifier.citedreferenceA. B. Weinstein, S. S. Stahl, Angew. Chem. 2012, 124, 11673 – 11677; Angew. Chem. Int. Ed. 2012, 51, 11505 – 11509;en_US
dc.identifier.citedreferenceX. Ye, P. B. White, S. S. Stahl, J. Org. Chem. 2013, 78, 2083 – 2090;en_US
dc.identifier.citedreferenceC. Martinez, Y. Wu, A. B. Weinstein, S. S. Stahl, G. Liu, K. Muniz, J. Org. Chem. 2013, 78, 6309 – 6315.en_US
dc.identifier.citedreferenceFor reviews on stereochemical pathways in alkene aminopalladation reactions, see:en_US
dc.identifier.citedreferenceR. I. McDonald, G. Liu, S. S. Stahl, Chem. Rev. 2011, 111, 2981 – 3019;en_US
dc.identifier.citedreferenceK. H. Jensen, M. S. Sigman, Org. Biomol. Chem. 2008, 6, 4083 – 4088.en_US
dc.identifier.citedreferenceFor examples of Pd‐catalyzed carboamination reactions that proceed via CH functionalization of solvent followed by anti ‐aminopalladation of the alkene, see:en_US
dc.identifier.citedreferenceC. F. Rosewall, P. A. Sibbald, D. V. Liskin, F. E. Michael, J. Am. Chem. Soc. 2009, 131, 9488 – 9489;en_US
dc.identifier.citedreferenceP. A. Sibbald, C. F. Rosewall, R. D. Swartz, F. E. Michael, J. Am. Chem. Soc. 2009, 131, 15945 – 15951.en_US
dc.identifier.citedreferenceIt is also possible the diminished selectivity derives from a diminished preference for axial vs. equatorial orientation of the substituent at the 2‐position in tosyl protected substrates. However, studies on addition of nucleophiles to N ‐tosyliminium ions suggest the tosyl group enforces axial orientation of 2‐substituents to minimize A 1,3 ‐strain in a manner comparable to acyl or boc groups. See: C. C. Silveira, L. A. Felix, A. L. Braga, T. S. Kaufman, Org. Lett. 2005, 7, 3701 – 3704.en_US
dc.identifier.citedreferenceB. P. Zavesky, N. R. Babij, J. P. Wolfe, Org. Lett. 2014, 16, 4952 – 4955.en_US
dc.identifier.citedreferenceP. B. White, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 18594 – 18597.en_US
dc.identifier.citedreferenceFor reviews, see:en_US
dc.identifier.citedreferenceJ. P. Wolfe, Eur. J. Org. Chem. 2007, 517 – 582;en_US
dc.identifier.citedreferenceJ. P. Wolfe, Synlett 2008, 2913 – 2937;en_US
dc.identifier.citedreferenceD. M. Schultz, J. P. Wolfe, Synthesis 2012, 44, 351 – 361;en_US
dc.identifier.citedreferenceJ. P. Wolfe, Top. Heterocycl. Chem. 2013, 32, 1 – 38.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. E. Ney, J. P. Wolfe, Angew. Chem. 2004, 116, 3689 – 3692; Angew. Chem. Int. Ed. 2004, 43, 3605 – 3608;en_US
dc.identifier.citedreferenceJ. E. Ney, M. B. Hay, Q. Yang, J. P. Wolfe, Adv. Synth. Catal. 2005, 347, 1614 – 1620;en_US
dc.identifier.citedreferenceM. B. Bertrand, J. P. Wolfe, Tetrahedron 2005, 61, 6447 – 6459;en_US
dc.identifier.citedreferenceM. B. Bertrand, J. D. Neukom, J. P. Wolfe, J. Org. Chem. 2009, 74, 2533 – 2540.en_US
dc.identifier.citedreferenceFor examples of Cu‐catalyzed intramolecular carboamination reactions of N ‐tosyl aminoalkene derivatives, see:en_US
dc.identifier.citedreferenceW. Zeng, S. R. Chemler, J. Am. Chem. Soc. 2007, 129, 12948 – 12949;en_US
dc.identifier.citedreferenceE. S. Sherman, P. H. Fuller, D. Kasi, S. R. Chemler, J. Org. Chem. 2007, 72, 3896 – 3905;en_US
dc.identifier.citedreferenceFor examples of Cu‐catalyzed intermolecular carboamination reactions between alkenes and N ‐tosyl aminoalkene derivatives, see: T. W. Liwosz, S. R. Chemler, J. Am. Chem. Soc. 2012, 134, 2020 – 2023.en_US
dc.identifier.citedreferenceFor examples of Au‐catalyzed carboamination reactions between boronic acids and N ‐tosyl aminoalkene derivatives, see:en_US
dc.identifier.citedreferenceG. Zhang, L. Cui, Y. Wang, L. Zhang, J. Am. Chem. Soc. 2010, 132, 1474 – 1475;en_US
dc.identifier.citedreferenceW. E. Brenzovich   Jr, D. Benitez, A. D. Lackner, H. P. Shunatona, E. Tkatchouk, W. A. Goddard   III, F. D. Toste, Angew. Chem. 2010, 122, 5651 – 5654; Angew. Chem. Int. Ed. 2010, 49, 5519 – 5522;en_US
dc.identifier.citedreferenceE. Tkatchouk, N. P. Mankad, D. Benitez, W. A. Goddard   III, F. D. Toste, J. Am. Chem. Soc. 2011, 133, 14293 – 14300;en_US
dc.identifier.citedreferenceS. Zhu, L. Ye, W. Wu, H. Jiang, Tetrahedron 2013, 69, 10375 – 10383.en_US
dc.identifier.citedreferenceFor an example of a dual photoredox/gold‐catalyzed carboamination reaction between aryl diazonium salts and aminoalkene derivatives, see:en_US
dc.identifier.citedreferenceM. N. Hopkinson, B. Sahoo, F. Glorius, Adv. Synth. Catal. 2014, 356, 2794 – 2800;en_US
dc.identifier.citedreferenceB. Sahoo, M. N. Hopkinson, F. Glorius, J. Am. Chem. Soc. 2013, 135, 5505 – 5508.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. D. Neukom, N. S. Perch, J. P. Wolfe, J. Am. Chem. Soc. 2010, 132, 6276 – 6277;en_US
dc.identifier.citedreferenceJ. D. Neukom, N. S. Perch, J. P. Wolfe, Organometallics 2011, 30, 1269 – 1277.en_US
dc.identifier.citedreferenceR. M. Fornwald, J. A. Fritz, J. P. Wolfe, Chem. Eur. J. 2014, 20, 8782 – 8790.en_US
dc.identifier.citedreference en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.