Show simple item record

Assessing the role of oxygen on ring current formation and evolution through numerical experiments

dc.contributor.authorIlie, R.en_US
dc.contributor.authorLiemohn, M. W.en_US
dc.contributor.authorToth, G.en_US
dc.contributor.authorYu Ganushkina, N.en_US
dc.contributor.authorDaldorff, L. K. S.en_US
dc.date.accessioned2015-08-05T16:47:23Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-06en_US
dc.identifier.citationIlie, R.; Liemohn, M. W.; Toth, G.; Yu Ganushkina, N.; Daldorff, L. K. S. (2015). "Assessing the role of oxygen on ring current formation and evolution through numerical experiments." Journal of Geophysical Research: Space Physics 120(6): 4656-4668.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112251
dc.description.abstractWe address the effect of ionospheric outflow and magnetospheric ion composition on the physical processes that control the development of the 5 August 2011 magnetic storm. Simulations with the Space Weather Modeling Framework are used to investigate the global dynamics and energization of ions throughout the magnetosphere during storm time, with a focus on the formation and evolution of the ring current. Simulations involving multifluid (with variable H+/O+ ratio in the inner magnetosphere) and single‐fluid (with constant H+/O+ ratio in the inner magnetosphere) MHD for the global magnetosphere with inner boundary conditions set either by specifying a constant ion density or by physics‐based calculations of the ion fluxes reveal that dynamical changes of the ion composition in the inner magnetosphere alter the total energy density of the magnetosphere, leading to variations in the magnetic field as well as particle drifts throughout the simulated domain. A low oxygen to hydrogen ratio and outflow resulting from a constant ion density boundary produced the most disturbed magnetosphere, leading to a stronger ring current but misses the timing of the storm development. Conversely, including a physics‐based solution for the ionospheric outflow to the magnetosphere system leads to a reduction in the cross‐polar cap potential (CPCP). The increased presence of oxygen in the inner magnetosphere affects the global magnetospheric structure and dynamics and brings the nightside reconnection point closer to the Earth. The combination of reduced CPCP together with the formation of the reconnection line closer to the Earth yields less adiabatic heating in the magnetotail and reduces the amount of energetic plasma that has access to the inner magnetosphere.Key PointsLow O+/H+ ratio produced stronger ring currentInclusion of physics‐based ionospheric outflow leads to a reduction in the CPCPOxygen presence is linked to a nightside reconnection point closer to the Earthen_US
dc.publisherAGUen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otheroutflowen_US
dc.subject.otherring currenten_US
dc.subject.otherMHDen_US
dc.subject.otherpolar winden_US
dc.subject.othercompositionen_US
dc.titleAssessing the role of oxygen on ring current formation and evolution through numerical experimentsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112251/1/jgra51856.pdf
dc.identifier.doi10.1002/2015JA021157en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceShay, M. A., and M. Swisdak ( 2004 ), Three‐species collisionless reconnection: Effect of O + on magnetotail reconnection, Phys. Rev. Lett., 93, 175,001, doi: 10.1103/PhysRevLett.93.175001.en_US
dc.identifier.citedreferenceLiemohn, M. W., and J. U. Kozyra ( 2005 ), Testing the hypothesis that charge exchange can cause a two‐phase decay, in The Inner Magnetosphere: Physics and Modeling, Geophys. Monogr. Ser., vol.  155, edited by T. I.   Pulkkinen, N. A.   Tsyganenko, and R. H. W.   Friedel, pp. 211, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceMukai, T., M. Hirahara, S. Machida, Y. Saito, T. Terasawa, and A. Nishida ( 1994 ), Geotail observation of cold ion streams in the medium distance magnetotail lobe in the course of a substorm, Geophys. Res. Lett., 21 ( 11 ), 1023 – 1026.en_US
dc.identifier.citedreferenceNosé, M., S. Taguchi, K. Hosokawa, S. P. Christon, R. W. McEntire, T. E. Moore, and M. R. Collier ( 2005 ), Overwhelming O + contribution to the plasma sheet energy density during the October 2003 superstorm: Geotail/EPIC and IMAGE/LENA observations, J. Geophys. Res., 110, A09S24, doi: 10.1029/2004JA010930.en_US
dc.identifier.citedreferencePeterson, W. K., H. L. Collin, M. Boehm, A. W. Yau, C. Cully, and G. Lu ( 2002 ), Investigation into the spatial and temporal coherence of ionospheric outflow on January 9–12, 1997, J. Atmos. Sol. Terr. Phys., 64, 1659 – 1666, doi: 10.1016/S1364-6826(02)00136-0.en_US
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309, doi: 10.1006/jcph.1999.6299.en_US
dc.identifier.citedreferenceRidley, A., T. Gombosi, and D. Dezeeuw ( 2004 ), Ionospheric control of the magnetosphere: Conductance, Ann. Geophys., 22, 567 – 584.en_US
dc.identifier.citedreferenceRidley, A. J., and M. W. Liemohn ( 2002 ), A model‐derived storm time asymmetric ring current driven electric field description, J. Geophys. Res., 107 ( A8 ), 1151, doi: 10.1029/2001JA000051.en_US
dc.identifier.citedreferenceSeki, K., T. Terasawa, M. Hirahara, and T. Mukai ( 1998 ), Quantification of tailward cold O+ beams in the lobe/mantle regions with Geotail data: Constraints on polar O+ outflows, J. Geophys. Res., 103 ( A12 ), 29,371 – 29,381.en_US
dc.identifier.citedreferenceShelley, E. G., R. G. Johnson, and R. D. Sharp ( 1972 ), Satellite observations of energetic heavy ions during a geomagnetic storm, J. Geophys. Res., 77, 6104 – 6110, doi: 10.1029/JA077i031p06104.en_US
dc.identifier.citedreferenceStepanova, M., V. Pinto, J. A. Valdivia, and E. E. Antonova ( 2011 ), Spatial distribution of the eddy diffusion coefficients in the plasma sheet during quiet time and substorms from THEMIS satellite data, J. Geophys. Res., 116, A00I24, doi: 10.1029/2010JA015887.en_US
dc.identifier.citedreferenceToffoletto, F., S. Sazykin, R. Spiro, and R. Wolf ( 2003 ), Inner magnetospheric modeling with the Rice Convection Model, Space Sci. Rev., 107, 175 – 196, doi: 10.1023/A:1025532008047.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceTóth, G., D. L. De Zeeuw, T. I. Gombosi, and K. G. Powell ( 2006 ), A parallel explicit/implicit time stepping scheme on block‐adaptive grids, J. Comput. Phys., 217, 722 – 758, doi: 10.1016/j.jcp.2006.01.029.en_US
dc.identifier.citedreferenceTóth, G., D. L. De Zeeuw, T. I. Gombosi, W. B. Manchester, A. J. Ridley, I. V. Sokolov, and I. I. Roussev ( 2007 ), Sun‐to‐thermosphere simulation of the 28–30 October 2003 storm with the Space Weather Modeling Framework, Space Weather, 5, S06003, doi: 10.1029/2006SW000272.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870 – 903, doi: 10.1016/j.jcp.2011.02.006.en_US
dc.identifier.citedreferenceWaite, J. H., Jr., T. Nagai, J. F. E. Johnson, C. R. Chappell, J. L. Burch, T. L. Killeen, P. B. Hays, G. R. Carignan, W. K. Peterson, and E. G. Shelley ( 1985 ), Escape of suprathermal O(+) ions in the polar cap, J. Geophys. Res., 90, 1619 – 1630, doi: 10.1029/JA090iA02p01619.en_US
dc.identifier.citedreferenceWang, C. P., L. R. Lyons, and T. Nagai ( 2010 ), Evolution of plasma sheet particle content under different interplanetary magnetic field conditions, J. Geophys. Res., 115, A06210, doi: 10.1029/2009JA015028.en_US
dc.identifier.citedreferenceWelling, D. T., and M. W. Liemohn ( 2014 ), Outflow in global magnetohydrodynamics as a function of a passive inner boundary source, J. Geophys. Res. Space Physics, 119, 2691 – 2705.en_US
dc.identifier.citedreferenceWelling, D. T., V. K. Jordanova, S. G. Zaharia, A. Glocer, and G. Toth ( 2011 ), The effects of dynamic ionospheric outflow on the ring current, J. Geophys. Res., 116, A00J19, doi: 10.1029/2010JA015642.en_US
dc.identifier.citedreferenceWiltberger, M., W. Lotko, J. G. Lyon, P. Damiano, and V. Merkin ( 2010 ), Influence of cusp O + outflow on magnetotail dynamics in a multifluid MHD model of the magnetosphere, J. Geophys. Res., 115, A00J05, doi: 10.1029/2010JA015579.en_US
dc.identifier.citedreferenceWinglee, R. M., D. Chua, M. Brittnacher, G. K. Parks, and G. Lu ( 2002 ), Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross‐polar cap potential, J. Geophys. Res., 107 ( A9 ), 1237, doi: 10.1029/2001JA000214.en_US
dc.identifier.citedreferenceWinglee, R. M., W. K. Peterson, A. W. Yau, E. Harnett, and A. Stickle ( 2008 ), Model/data comparisons of ionospheric outflow as a function of invariant latitude and magnetic local time, J. Geophys. Res., 113, A06220, doi: 10.1029/2007JA012817.en_US
dc.identifier.citedreferenceYu, Y., and A. J. Ridley ( 2009 ), Response of the magnetosphere‐ionosphere system to a sudden southward turning of interplanetary magnetic field, J. Geophys. Res., 114, A03216, doi: 10.1029/2008JA013292.en_US
dc.identifier.citedreferenceZhang, J., et al. ( 2007 ), Solar and interplanetary sources of major geomagnetic storms during 1996–2005, J. Geophys. Res., 112, A10102, doi: 10.1029/2007JA012321.en_US
dc.identifier.citedreferenceBoris, J. P. ( 1970 ), A physically motivated solution of the Alfven problem. Internal report at Naval Research Laboratory, NRL Memorandum Rep., Naval Research Laboratory, Washington, D. C.en_US
dc.identifier.citedreferenceBrambles, O. J., W. Lotko, B. Zhang, M. Wiltberger, J. Lyon, and R. J. Strangeway ( 2011 ), Magnetosphere sawtooth oscillations induced by ionospheric outflow, Science, 332 ( 6 ), 1183 – 1186.en_US
dc.identifier.citedreferenceBrambles, O. J., W. Lotko, B. Zhang, J. Ouellette, J. Lyon, and M. Wiltberger ( 2013 ), The effects of ionospheric outflow on ICME and SIR driven sawtooth events, J. Geophys. Res. Space Physics, 118, 6026 – 6041, doi: 10.1002/jgra.50522.en_US
dc.identifier.citedreferenceCandidi, M., S. Orsini, and V. FORMISANO ( 1982 ), The properties of ionospheric O + ions as observed in the magnetotail boundary‐layer and northern plasma lobe, J. Geophys. Res., 87 ( NA11 ), 9097 – 9106.en_US
dc.identifier.citedreferenceCandidi, M., S. Orsini, and A. G. Ghielmetti ( 1984 ), Observations of multiple ion beams in the magnetotail: Evidence for a double proton population, J. Geophys. Res., 89 ( A4 ), 2180 – 2184.en_US
dc.identifier.citedreferenceChappell, C. R., T. E. Moore, and J. H. Waite   Jr. ( 1987 ), The ionosphere as a fully adequate source of plasma for the Earth's magnetosphere, J. Geophys. Res., 92, 5896 – 5910, doi: 10.1029/JA092iA06p05896.en_US
dc.identifier.citedreferenceChen, M. W., M. Ashour‐Abdalla, W. K. Peterson, T. E. Moore, and A. M. Persoon ( 1990 ), Plasma characteristics of upflowing ion beams in the polar cap region, J. Geophys. Res., 95, 3907 – 3924, doi: 10.1029/JA095iA04p03907.en_US
dc.identifier.citedreferenceCladis, J. B. ( 1986 ), Parallel acceleration and transport of ions from polar ionosphere to plasma sheet, Geophys. Res. Lett., 13 ( 9 ), 893 – 896.en_US
dc.identifier.citedreferenceCully, C. M., E. F. Donovan, A. W. Yau, and G. G. Arkos ( 2003a ), Akebono/suprathermal mass spectrometer observations of low‐energy ion outflow: Dependence on magnetic activity and solar wind conditions, J. Geophys. Res., 108 ( A2 ), 1093, doi: 10.1029/2001JA009200.en_US
dc.identifier.citedreferenceCully, C. M., E. F. Donovan, A. W. Yau, and H. J. Opgenoorth ( 2003b ), Supply of thermal ionospheric ions to the central plasma sheet, J. Geophys. Res., 108 ( A2 ), 1092, doi: 10.1029/2002JA009457.en_US
dc.identifier.citedreferenceDaglis, I. A., R. M. Thorne, W. Baumjohann, and S. Orsini ( 1999 ), The terrestrial ring current: Origin, formation, and decay, Rev. Geophys., 37, 407 – 438, doi: 10.1029/1999RG900009.en_US
dc.identifier.citedreferenceDe Zeeuw, D. L., S. Sazykin, R. A. Wolf, T. I. Gombosi, A. J. Ridley, and G. Toth ( 2004 ), Coupling of a global MHD code and an inner magnetospheric model: Initial results, J. Geophys. Res., 109, A12219, doi: 10.1029/2003JA010366.en_US
dc.identifier.citedreferenceDessler, A. J., and E. N. Parker ( 1959 ), Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64, 2239 – 2252, doi: 10.1029/JZ064i012p02239.en_US
dc.identifier.citedreferenceGanushkina, N. Y., M. W. Liemohn, M. V. Kubyshkina, R. Ilie, and H. J. Singer ( 2010 ), Distortions of the magnetic field by storm‐time current systems in Earth's magnetosphere, Ann. Geophys., 28, 123 – 140, doi: 10.5194/angeo-28-123-2010.en_US
dc.identifier.citedreferenceGarcia, K. S., V. G. Merkin, and W. J. Hughes ( 2010 ), Effects of nightside O + outflow on magnetospheric dynamics: Results of multifluid MHD modeling, J. Geophys. Res., 115, A00J09, doi: 10.1029/2010JA015730.en_US
dc.identifier.citedreferenceGlocer, A., G. Toth, and T. Gombosi ( 2007 ), Modeling ionospheric outflow during a geomagnetic storm, Eos Trans. AGU, 88 ( 52 ), Fall Meet. Suppl., Abstracts SA51B–0521.en_US
dc.identifier.citedreferenceGlocer, A., G. Tóth, T. Gombosi, and D. Welling ( 2009a ), Modeling ionospheric outflows and their impact on the magnetosphere: Initial results, J. Geophys. Res., 114, A05216, doi: 10.1029/2009JA014053.en_US
dc.identifier.citedreferenceGlocer, A., G. Tóth, Y. Ma, T. Gombosi, J.‐C. Zhang, and L. M. Kistler ( 2009b ), Multifluid Block‐Adaptive‐Tree Solar wind Roe‐type Upwind Scheme: Magnetospheric composition and dynamics during geomagnetic storms: Initial results, J. Geophys. Res., 114, A12203, doi: 10.1029/2009JA014418.en_US
dc.identifier.citedreferenceGlocer, A., M. Fok, X. Meng, G. Tóth, N. Buzulukova, S. Chen, and K. Lin ( 2013 ), CRCM + BATS‐R‐US two‐way coupling, J. Geophys. Res. Space Physics, 118 ( 4 ), 1635 – 1650, doi: 10.1002/jgra.50221.en_US
dc.identifier.citedreferenceGombosi, T. I., and A. F. Nagy ( 1989 ), Time‐dependent modeling of field‐aligned current‐generated ion transients in the polar wind, J. Geophys. Res., 94, 359 – 369, doi: 10.1029/JA094iA01p00359.en_US
dc.identifier.citedreferenceHamilton, D. C., G. Gloeckler, F. M. Ipavich, B. Wilken, and W. Stuedemann ( 1988 ), Ring current development during the great geomagnetic storm of February 1986, J. Geophys. Res., 93, 14,343 – 14,355, doi: 10.1029/JA093iA12p14343.en_US
dc.identifier.citedreferenceHarel, M., R. A. Wolf, P. H. Reiff, R. W. Spiro, W. J. Burke, F. J. Rich, and M. Smiddy ( 1981 ), Quantitative simulation of a magnetospheric substorm. I: Model logic and overview, J. Geophys. Res., 86, 2217 – 2241, doi: 10.1029/JA086iA04p02217.en_US
dc.identifier.citedreferenceHorwitz, J. L., C. J. Pollock, T. E. Moore, W. K. Peterson, J. L. Burch, J. D. Winningham, J. D. Craven, L. A. Frank, and A. Persoon ( 1992 ), The polar cap environment of outflowing O(+), J. Geophys. Res., 97, 8361 – 8379, doi: 10.1029/92JA00147.en_US
dc.identifier.citedreferenceHowarth, A., and A. W. Yau ( 2008 ), The effects of IMF and convection on thermal ion outflow in magnetosphere‐ionosphere coupling, J. Atmos. Sol. Terr. Phys., 70, 2132 – 2143, doi: 10.1016/j.jastp.2008.08.008.en_US
dc.identifier.citedreferenceHuddleston, M. M., C. R. Chappell, D. C. Delcourt, T. E. Moore, B. L. Giles, and M. O. Chandler ( 2005 ), An examination of the process and magnitude of ionospheric plasma supply to the magnetosphere, J. Geophys. Res., 110, A12202, doi: 10.1029/2004JA010401.en_US
dc.identifier.citedreferenceIlie, R., M. W. Liemohn, J. Borovsky, and J. Kozyra ( 2010a ), An investigation of the magnetosphere‐ionosphere response to real and idealized CIR events through global MHD simulations, Proc. R. Soc. A, 466, 3279 – 3303, doi: 10.1098/rspa.2010.0074.en_US
dc.identifier.citedreferenceIlie, R., M. W. Liemohn, and A. Ridley ( 2010b ), The effect of smoothed solar wind inputs on global modeling results, J. Geophys. Res., 115, A01213, doi: 10.1029/2009JA014443.en_US
dc.identifier.citedreferenceIlie, R., R. M. Skoug, H. O. Funsten, M. W. Liemohn, J. J. Bailey, and M. Gruntman ( 2013a ), The impact of geocoronal density on ring current development, J. Atmos. Sol. Terr. Phys., 99, 92 – 103, doi: 10.1016/j.jastp.2012.03.010.en_US
dc.identifier.citedreferenceIlie, R., R. M. Skoug, P. Valek, H. O. Funsten, and A. Glocer ( 2013b ), Global view of inner magnetosphere composition during storm time, J. Geophys. Res. Space Physics, 118, 7074 – 7084, doi: 10.1002/2012JA018468.en_US
dc.identifier.citedreferenceKatus, R. M., and M. W. Liemohn ( 2013 ), Similarities and differences in low‐ to middle‐latitude geomagnetic indices, J. Geophys. Res. Space Physics, 118, 5149 – 5156, doi: 10.1002/jgra.50501.en_US
dc.identifier.citedreferenceKozyra, J. U., and M. W. Liemohn ( 2003 ), Ring current energy input and decay, Space Sci. Rev., 109, 105 – 131, doi: 10.1023/B:SPAC.0000007516.10433.ad.en_US
dc.identifier.citedreferenceLangel, R. A., and R. H. Estes ( 1985 ), Large‐scale, near‐field magnetic fields from external sources and the corresponding induced internal field, J. Geophys. Res., 90, 2487 – 2494, doi: 10.1029/JB090iB03p02487.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.