Show simple item record

The role of melano‐macrophage aggregates in the storage of mercury and other metals: An example from yelloweye rockfish (Sebastes ruberrimus)

dc.contributor.authorBarst, Benjamin D.en_US
dc.contributor.authorBridges, Kristinen_US
dc.contributor.authorKorbas, Malgorzataen_US
dc.contributor.authorRoberts, Aaron P.en_US
dc.contributor.authorVan Kirk, Krayen_US
dc.contributor.authorMcNeel, Kevinen_US
dc.contributor.authorDrevnick, Paul E.en_US
dc.date.accessioned2015-08-05T16:47:26Z
dc.date.available2016-09-06T15:43:59Zen
dc.date.issued2015-08en_US
dc.identifier.citationBarst, Benjamin D.; Bridges, Kristin; Korbas, Malgorzata; Roberts, Aaron P.; Van Kirk, Kray; McNeel, Kevin; Drevnick, Paul E. (2015). "The role of melano‐macrophage aggregates in the storage of mercury and other metals: An example from yelloweye rockfish (Sebastes ruberrimus)." Environmental Toxicology and Chemistry 34(8): 1918-1925.en_US
dc.identifier.issn0730-7268en_US
dc.identifier.issn1552-8618en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112257
dc.description.abstractMelano‐macrophage aggregates, collections of specialized cells of the innate immune system of fish, are considered a general biomarker for contaminant toxicity. To elucidate further the relationship between macrophage aggregates and metals exposure, yelloweye rockfish (Sebastes ruberrimus), a long‐lived species, were sampled from the east and west coasts of Prince of Wales Island, Alaska. Metals concentrations in livers (inorganic Hg, methyl mercury, Se, Ni, Cd, Cu, Zn) and spleens (inorganic Hg and methyl mercury) were determined, as well as their correlations with melano‐macrophage aggregate area. Sections of liver tissue were analyzed by laser ablation‐inductively coupled plasma–mass spectrometry to determine how metals were spatially distributed between hepatocytes and macrophage aggregates. The concentration of inorganic Hg in whole tissue was the best predictor of macrophage area in yelloweye livers and spleens. Macrophage aggregates had higher relative concentrations than most metals compared with the surrounding hepatocytes. However, not all metals were accumulated to the same degree, as evidenced by differences in the ratios of metals in macrophages compared with hepatocytes. Laser ablation data were corroborated with the results of X‐ray synchrotron fluorescence imaging of a yelloweye liver section. Hepatic macrophage aggregates in yelloweye rockfish may play an important role in the detoxification and storage of Hg and other metals. Environ Toxicol Chem 2015;34:1918–1925. © 2015 SETACen_US
dc.publisherLewis Publishersen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMercuryen_US
dc.subject.otherLA‐ICP‐MSen_US
dc.subject.otherMelano‐macrophage aggregatesen_US
dc.subject.otherMetalsen_US
dc.subject.otherX‐ray fluorescence imagingen_US
dc.titleThe role of melano‐macrophage aggregates in the storage of mercury and other metals: An example from yelloweye rockfish (Sebastes ruberrimus)en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112257/1/etc3009.pdf
dc.identifier.doi10.1002/etc.3009en_US
dc.identifier.sourceEnvironmental Toxicology and Chemistryen_US
dc.identifier.citedreferenceVan Dyk J, Cochrane M, Wagenaar G. 2012. Liver histopathology of the sharptooth catfish Clarias gariepinus as a biomarker of aquatic pollution. Chemosphere 87: 301 – 311.en_US
dc.identifier.citedreferenceKarimi R, Chen CY, Pickhardt PC, Fisher NS, Folt CL. 2007. Stoichiometric controls of mercury dilution by growth. Proc Natl Acad Sci 104: 7477 – 7482.en_US
dc.identifier.citedreferenceWard DM, Nislow KH, Chen CY, Folt CL. 2010. Rapid, efficient growth reduces mercury concentrations in stream‐dwelling Atlantic salmon. Trans Am Fish Soc 139: 1 – 10.en_US
dc.identifier.citedreferenceRajotte JW, Couture P. 2002. Effects of environmental metal contamination on the condition, swimming performance, and tissue metabolic capacities of wild yellow perch ( Perca flavescens ). Can J Fish Aquat Sci 59: 1296 – 1304.en_US
dc.identifier.citedreferenceDethloff G, Bailey H, Maier K. 2001. Effects of dissolved copper on select hematological, biochemical, and immunological parameters of wild rainbow trout ( Oncorhynchus mykiss ). Arch Environ Contam Toxicol 40: 371 – 380.en_US
dc.identifier.citedreferencePtashynski M, Pedlar R, Evans R, Baron C, Klaverkamp J. 2002. Toxicology of dietary nickel in lake whitefish ( Coregonus clupeaformis ). Aquat Toxicol 58: 229 – 247.en_US
dc.identifier.citedreferenceDrevnick P, Roberts A, Otter R, Hammerschmidt C, Klaper R, Oris J. 2008. Mercury toxicity in livers of northern pike (Esox lucius) from Isle Royale, USA. Comp Biochem Physiol C 147: 331 – 338.en_US
dc.identifier.citedreferenceDi Giulio RT, Hinton DE. 2008. The Toxicology of Fishes. CRC, Boca Raton, FL, USA.en_US
dc.identifier.citedreferenceVan der Oost R, Beyer J, Vermeulen NP. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ Toxicol Pharmacol 13: 57 – 149.en_US
dc.identifier.citedreferencePereira J, Mercaldo‐Allen R, Kuropat C, Luedke D, Sennefelder G. 1993. Effect of cadmium accumulation on serum vitellogenin levels and hepatosomatic and gonadosomatic indices of winter flounder ( Pleuronectes americanus ). Arch Environ Contam Toxicol 24: 427 – 431.en_US
dc.identifier.citedreferenceBaker R, Handy R, Davies S, Snook J. 1998. Chronic dietary exposure to copper affects growth, tissue lipid peroxidation, and metal composition of the grey mullet, Chelon labrosus. Mar Environ Res 45: 357 – 365.en_US
dc.identifier.citedreferenceLarose C, Canuel R, Lucotte M, Di Giulio RT. 2008. Toxicological effects of methylmercury on walleye ( Sander vitreus ) and perch ( Perca flavescens ) from lakes of the boreal forest. Comp Biochem Physiol C 147: 139 – 149.en_US
dc.identifier.citedreferenceGiguère A, Campbell PG, Hare L, McDonald DG, Rasmussen JB. 2004. Influence of lake chemistry and fish age on cadmium, copper, and zinc concentrations in various organs of indigenous yellow perch ( Perca flavescens ). Can J Fish Aquat Sci 61: 1702 – 1716.en_US
dc.identifier.citedreferenceBerntssen M, Hylland K, Julshamn K, Lundebye AK, Waagbø R. 2004. Maximum limits of organic and inorganic mercury in fish feed. Aquacult Nutr 10: 83 – 97.en_US
dc.identifier.citedreferenceCizdziel J, Hinners T, Cross C, Pollard J. 2003. Distribution of mercury in the tissues of five species of freshwater fish from Lake Mead, USA. J Environ Monit 5: 802 – 807.en_US
dc.identifier.citedreferencePulsford A, Ryan K, Nott J. 1992. Metals and melanomacrophages in flounder, Platichthys flesus, spleen and kidney. J Mar Biol Assoc UK 72: 483 – 498.en_US
dc.identifier.citedreferenceWoshner V, O'Hara T, Eurell J, Wallig M, Bratton G, Suydam R, Beasley V. 2002. Distribution of inorganic mercury in liver and kidney of beluga and bowhead whales through autometallographic development of light microscopic tissue sections. Toxicol Pathol 30: 209.en_US
dc.identifier.citedreferenceBertini I. 2007. Biological Inorganic Chemistry: Structure and Reactivity. University Science Books, Herndon, VA, USA.en_US
dc.identifier.citedreferenceManni ML, Tomai LP, Norris CA, Thomas LM, Kelley EE, Salter RD, Crapo JD, Chang L‐YL, Watkins SC, Piganelli JD. 2011. Extracellular superoxide dismutase in macrophages augments bacterial killing by promoting phagocytosis. Am J Pathol 178: 2752 – 2759.en_US
dc.identifier.citedreferenceBabu U, Failla ML. 1990. Respiratory burst and candidacidal activity of peritoneal macrophages are impaired in copper‐deficient rats. J Nutr 120: 1692 – 1699.en_US
dc.identifier.citedreferenceCerone S, Sansinanea A, Streitenberger S, Garcia C, Auza N. 2000. Bovine monocyte‐derived macrophage function in induced copper deficiency. Gen Physiol Biophys 19: 49 – 58.en_US
dc.identifier.citedreferenceRotruck J, Pope A, Ganther H, Swanson A, Hafeman DG, Hoekstra W. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science 179: 588 – 590.en_US
dc.identifier.citedreferencePařízek J, Ošt′ádalová I. 1967. The protective effect of small amounts of selenite in sublimate intoxication. Experientia 23: 142 – 143.en_US
dc.identifier.citedreferenceGanther H, Goudie C, Sunde M, Kopecky M, Wanger P, Hoh S, Hoekstra W. 1972. Selenium: Relation to decreased toxicity of methylmercury added to diets containing tuna. Science (Wash) 175: 1122 – 1124.en_US
dc.identifier.citedreferenceKhan MAK, Wang F. 2009. Mercury selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury selenium antagonism. Environ Toxicol Chem 28: 1567 – 1577.en_US
dc.identifier.citedreferenceRalston NV, Blackwell III JL, Raymond LJ. 2007. Importance of molar ratios in selenium‐dependent protection against methylmercury toxicity. Biol Trace Elem Res 119: 255 – 268.en_US
dc.identifier.citedreferenceMartoja R, Berry JP. 1980. Identification of tiemannite as a probable product of demethylation of mercury by selenium in cetaceans: A complement to the scheme of the biological cycle of mercury. Vie Milieu 30: 7 – 10.en_US
dc.identifier.citedreferenceWolke R. 1992. Piscine macrophage aggregates: A review. Annu Rev Fish Dis 2: 91 – 108.en_US
dc.identifier.citedreferenceAgius C, Roberts R. 2003. Melano macrophage centres and their role in fish pathology. J Fish Dis 26: 499 – 509.en_US
dc.identifier.citedreferenceMcCarthy J, Shugart L. 1990. Biomarkers of Environmental Contamination. Lewis Publishers, Chelsea, MI, USA.en_US
dc.identifier.citedreferenceCapps T, Mukhi S, Rinchard JJ, Theodorakis CW, Blazer VS, Patiño R. 2004. Exposure to perchlorate induces the formation of macrophage aggregates in the trunk kidney of zebrafish and mosquitofish. J Aquat Anim Health 16: 145 – 151.en_US
dc.identifier.citedreferenceMela M, Randi M, Ventura D, Carvalho C, Pelletier E, Oliveira Ribeiro C. 2007. Effects of dietary methylmercury on liver and kidney histology in the neotropical fish Hoplias malabaricus. Ecotoxicol Environ Saf 68: 426 – 435.en_US
dc.identifier.citedreferenceGiari L, Manera M, Simoni E, Dezfuli B. 2007. Cellular alterations in different organs of European sea bass Dicentrarchus labrax (L.) exposed to cadmium. Chemosphere 67: 1171 – 1181.en_US
dc.identifier.citedreferenceKhan R. 2003. Health of flatfish from localities in Placentia Bay, Newfoundland, contaminated with petroleum and PCBs. Arch Environ Contam Toxicol 44: 485 – 492.en_US
dc.identifier.citedreferenceRaldúa D, Bayona J, Barceló D. 2007. Mercury levels and liver pathology in feral fish living in the vicinity of a mercury cell chlor‐alkali factory. Chemosphere 66: 1217 – 1225.en_US
dc.identifier.citedreferenceSchwindt AR, Fournie JW, Landers DH, Schreck CB, Kent ML. 2008. Mercury concentrations in salmonids from western US national parks and relationships with age and macrophage aggregates. Environ Sci Technol 42: 1365 – 1370.en_US
dc.identifier.citedreferenceBarst BD, Gevertz AK, Chumchal MM, Smith JD, Rainwater T, Drevnick P, Hudelson KE, Hart A, Verbeck GF, Roberts AP. 2011. Laser ablation ICP‐MS co‐localization of mercury and immune response in fish. Environ Sci Technol 45: 8982 – 8988.en_US
dc.identifier.citedreferenceBatchelar KL, Kidd KA, Drevnick PE, Munkittrick KR, Burgess NM, Roberts AP, Smith JD. 2013. Evidence of impaired health in yellow perch (Perca flavescens) from a biological mercury hotspot in northeastern North America. Environ Toxicol Chem 32: 627 – 637.en_US
dc.identifier.citedreferenceMacLellan S, Station PB. 1997. How to Age Rockfish (Sebastes) Using S. Alutus as an Example, the Otolith Burnt Section Technique. Fisheries and Oceans Canada, Nanaimo, BC, Canada.en_US
dc.identifier.citedreferenceYamanaka KL, Lacko L, Withler R, Grandin C, Lochead J, Martin J, Olsen N, Wallace S. 2006. A Review of Yelloweye Rockfish Sebastes ruberrimus Along the Pacific Coast of Canada: Biology, Distribution and Abundance Trends. Fisheries and Oceans Canada, Science, Nanaimo, BC, Canada.en_US
dc.identifier.citedreferenceMatthews KR. 1990. A telemetric study of the home ranges and homing routes of copper and quillback rockfishes on shallow rocky reefs. Can J Zool 68: 2243 – 2250.en_US
dc.identifier.citedreferenceJorgensen SJ, Kaplan DM, Klimley A, Morgan SG, O'Farrell MR, Botsford LW. 2006. Limited movement in blue rockfish Sebastes mystinus: Internal structure of home range. Mar Ecol Prog Ser 327: 157.en_US
dc.identifier.citedreferenceBarst BD, Hammerschmidt CR, Chumchal MM, Muir DC, Smith JD, Roberts AP, Rainwater TR, Drevnick PE. 2013. Determination of mercury speciation in fish tissue with a direct mercury analyzer. Environ Toxicol Chem 32: 1237 – 1241.en_US
dc.identifier.citedreferenceBeaudin L, Johannessen SC, Macdonald RW. 2010. Coupling laser ablation and atomic fluorescence spectrophotometry: An example using mercury analysis of small sections of fish scales. Anal Chem 82: 8785 – 8788.en_US
dc.identifier.citedreferencePrince L, Korbas M, Davidson P, Broberg K, Rand MD. 2014. Target organ specific activity of Drosophila MRP (ABCC1) moderates developmental toxicity of methylmercury. Toxicol Sci 140: 425 – 435.en_US
dc.identifier.citedreferenceSchwindt AR, Truelove N, Schreck CB, Fournie JW, Landers DH, Kent ML. 2006. Quantitative evaluation of macrophage aggregates in brook trout Salvelinus fontinalis and rainbow trout Oncorhynchus mykiss. Dis Aquat Org 68: 101.en_US
dc.identifier.citedreferenceMizuno S, Misaka N, Miyakoshi Y, Takeuchi K, Kasahara N. 2002. Effects of starvation on melano‐macrophages in the kidney of masu salmon ( Oncorhynchus masou ). Aquaculture 209: 247 – 255.en_US
dc.identifier.citedreferenceFänge R, Nilsson S. 1985. The fish spleen: Structure and function. Experientia 41: 152 – 158.en_US
dc.identifier.citedreferenceMerrill L, Collins PM. 2015. Environment and sex‐specific allocation strategies among gonadal, somatic and immune indices in a marine fish. Can J Zool 93: 207 – 212.en_US
dc.identifier.citedreferenceRipley EA, Redmann RE. 1995. Environmental Effects of Mining. CRC, Boca Raton, FL, USA.en_US
dc.identifier.citedreferenceRobinson G, Twenhofel W. 1953. Some lead‐zinc and zinc‐copper deposits of the Ketchikan and Wales districts, Alaska. Bulletin 998‐C. US Geological Survey, Washington, DC.en_US
dc.identifier.citedreferenceWright CW, Wright C. 1907. Lode Mining in Southeastern Alaska. US Government Printing Office, Washington DC.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.