Show simple item record

Effects of leaf maturity and wind stress on the nutrition of the generalist caterpillar Lymantria dispar feeding on poplar

dc.contributor.authorBarbehenn, Raymond V.en_US
dc.contributor.authorHaugberg, Nolaen_US
dc.contributor.authorKochmanski, Josephen_US
dc.contributor.authorMenachem, Brandonen_US
dc.date.accessioned2015-08-05T16:47:29Z
dc.date.available2016-10-10T14:50:23Zen
dc.date.issued2015-09en_US
dc.identifier.citationBarbehenn, Raymond V.; Haugberg, Nola; Kochmanski, Joseph; Menachem, Brandon (2015). "Effects of leaf maturity and wind stress on the nutrition of the generalist caterpillar Lymantria dispar feeding on poplar." Physiological Entomology 40(3): 212-222.en_US
dc.identifier.issn0307-6962en_US
dc.identifier.issn1365-3032en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112262
dc.description.abstractThe growth rates of insect herbivores commonly decrease when they feed on mature leaves due to the combined effects of several nutritional and physiological mechanisms. Environmental stresses during leaf development may also decrease herbivore performance. The present study tests two main hypotheses to help clarify the importance of these factors for the nutrition and growth of an insect herbivore: (i) decreases in nutrient levels, consumption rates and nutrient assimilation efficiencies impact negatively on herbivores feeding on mature leaves and (ii) wind stress has a negative impact on herbivores feeding on mature leaves. The results show that mature poplar (Populus alba × Populus tremula) leaves have decreased levels of protein and increased levels of fibre, and that growth rates of gypsy moth (Lymantria dispar L.) are decreased on mature leaves in association with decreased consumption rates. However, in contrast to the first hypothesis, protein and carbohydrate are assimilated efficiently (74–82% and 84–87%, respectively) from immature and mature poplar leaves. The larvae are able to chew mature leaves as efficiently as immature leaves, potentially maximizing nutrient extraction. By contrast to the second hypothesis, wind‐stressed leaves have no significant detrimental effects on nutrient assimilation efficiencies, and the lower growth rates of L. dispar larvae feeding on mature wind‐stressed leaves can be explained by lower consumption rates. Therefore, the availability of nutrients to herbivores feeding on mature tree leaves is not necessarily impacted by lower assimilation efficiencies, even when leaves develop under wind stress. These results help explain some of the large variation between the nutritional qualities of trees for forest Lepidoptera.en_US
dc.publisherThe Royal Entomological Societyen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherlarvaen_US
dc.subject.othernutrientsen_US
dc.subject.otherproteinen_US
dc.subject.otherinsect herbivoreen_US
dc.subject.otherdigestionen_US
dc.subject.othercarbohydratesen_US
dc.subject.otherAssimilationen_US
dc.titleEffects of leaf maturity and wind stress on the nutrition of the generalist caterpillar Lymantria dispar feeding on poplaren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112262/1/phen12105_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112262/2/phen12105.pdf
dc.identifier.doi10.1111/phen.12105en_US
dc.identifier.sourcePhysiological Entomologyen_US
dc.identifier.citedreferenceParry, D., Spence, J.R. & Volney, W.J.A. ( 1998 ) Budbreak phenology and natural enemies mediate survival of first‐instar forest tent caterpillar (Lepidoptera: Lasiocampidae). Environmental Entomology, 27, 1368 – 1374.en_US
dc.identifier.citedreferenceHough, J.A. & Pimentel, D. ( 1978 ) Influence of host foliage on development, survival and fecundity of the gypsy moth. Environmental Entomology, 7, 97 – 102.en_US
dc.identifier.citedreferenceHunter, A.F. & Lechowicz, M.J. ( 1992 ) Foliage quality changes during canopy development of some northern hardwood trees. Oecologia, 89, 316 – 323.en_US
dc.identifier.citedreferenceJaffe, M.J. & Forbes, S. ( 1993 ) Thigmomorphogenesis: the effect of mechanical perturbation on plants. Plant Growth Regulation, 12, 313 – 324.en_US
dc.identifier.citedreferenceKleiner, K.W., Ellis, D.D., McCown, B.H. & Raffa, K.F. ( 2003 ) Leaf ontogeny influences leaf phenolics and the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d ‐endotoxin in hybrid poplar against gypsy moth. Journal of Chemical Ecology, 29, 2585 – 2602.en_US
dc.identifier.citedreferenceKraus, E., Kolloffel, C. & Lambers, H. ( 1994 ) The effect of handling on photosynthesis, transpiration, respiration, and nitrogen and carbohydrate content of populations of Lolium perenne. Physiologia Plantarum, 91, 631 – 638.en_US
dc.identifier.citedreferenceKursar, T.A. & Coley, P.D. ( 2003 ) Convergence in defense syndromes of young leaves in tropical rainforests. Biochemical Systematics and Ecology, 31, 929 – 949.en_US
dc.identifier.citedreferenceLarson, P.R. & Isebrands, J.G. ( 1971 ) The plastochron index as applied to developmental studies of cottonwood. Canadian Journal of Forest Research, 1, 1 – 11.en_US
dc.identifier.citedreferenceLiebhold, A.M., Gottschalk, K.W., Muzika, R.‐M. et al. ( 1995 ) Suitability of North American Tree Species to the Gypsy Moth: A Summary of Field and Laboratory Tests. General Technical Report No NE‐211. United States Department of Agriculture Forest Service, Northeastern Forest Experimental Station, Radnor, Pennsylvania.en_US
dc.identifier.citedreferenceMeyer, G.A. & Montgomery, M.E. ( 1987 ) Relationships between leaf age and the food quality of cottonwood foliage for the gypsy moth, Lymantria dispar. Oecologia, 72, 527 – 532.en_US
dc.identifier.citedreferenceOsier, T.L., Hwang, S.‐Y. & Lindroth, R.L.J. ( 2000 ) Effects of phytochemical variation in quaking aspen Populus tremuloides clones on gypsy moth Lymantria dispar performance in the field and laboratory. Ecological Entomology, 25, 197 – 207.en_US
dc.identifier.citedreferenceMattson, W.J. ( 1980 ) Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11, 119 – 161.en_US
dc.identifier.citedreferenceRaupp, M.J. & Denno, R.F. ( 1983 ) Leaf age as a predictor of herbivore distribution and abundance. Variable Plants and Herbivores in Natural and Managed Systems (ed. by R. F. Denno and M. S. McClure ), pp. 91 ‐ 124. Academic Press, New York, New York.en_US
dc.identifier.citedreferenceRaupp, M.J., Werren, J.H. & Sadof, C.S. ( 1988 ) Effects of short‐term phenological changes in leaf suitability on the survivorship, growth and development of gypsy moth (Lepidoptera: Lymantriidae) larvae. Environmental Entomology, 17, 316 – 319.en_US
dc.identifier.citedreferenceRead, J. & Stokes, A. ( 2006 ) Plant biomechanics in an ecological context. American Journal of Botany, 93, 1546 – 1565.en_US
dc.identifier.citedreferenceRuuhola, T., Ossipov, V., Lempa, K. & Haukioja, E. ( 2003 ) Amino acids during development of mountain birch leaves. Chemoecology, 13, 95 – 101.en_US
dc.identifier.citedreferenceSAS Institute ( 2010 ) The SAS System for Windows. Version 9.3. SAS Institute, Cary, North Carolina.en_US
dc.identifier.citedreferenceSchmidt, D. & Reese, J. ( 1986 ) Sources of error in nutritional index studies of insects on artificial diet. Journal of Insect Physiology, 32, 193 – 198.en_US
dc.identifier.citedreferenceSchroeder, L.A. ( 1986 ) Changes in tree leaf quality and growth performance of lepidopteran larvae. Ecology, 67, 1628 – 1636.en_US
dc.identifier.citedreferenceSchweitzer, D.F. ( 1979 ) Effects of foliage age on body weight and survival in larvae of tribe Lithophanini (Lepidoptera: Noctuidae). Oikos, 32, 403 – 408.en_US
dc.identifier.citedreferenceScriber, J.M. ( 1979 ) Effects of leaf‐water supplementation upon post‐ingestive nutritional indices of forb‐, shrub‐, vine‐, and tree‐feeding Lepidoptera. Entomologia Experimentalis et Applicata, 25, 240 – 252.en_US
dc.identifier.citedreferenceScriber, J.M. & Slansky, F. ( 1981 ) The nutritional ecology of immature insects. Annual Review of Entomology, 26, 183 – 211.en_US
dc.identifier.citedreferenceTrier, T.M. & Mattson, W.J. ( 2003 ) Diet‐induced thermogenesis in insects: a developing concept in nutritional ecology. Environmental Entomology, 32, 1 – 8.en_US
dc.identifier.citedreferenceVan Soest, P.J. & Wine, R.H. ( 1967 ) Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell‐wall constituents. Journal of the Association of Official Analytical Chemists, 50, 50 – 55.en_US
dc.identifier.citedreferenceZanotto, F.P., Simpson, S.J. & Raubenheimer, D. ( 1993 ) The regulation of growth by locusts through post‐ingestive compensation for variation in the levels of dietary protein and carbohydrate. Physiological Entomology, 18, 425 – 434.en_US
dc.identifier.citedreferenceZhao, D., MacKown, C.T., Starks, P.J. & Kindiger, B.K. ( 2010 ) Rapid analysis of nonstructural carbohydrates in grass forage using microplate enzymatic assays. Crop Science, 50, 1537 – 1545.en_US
dc.identifier.citedreferenceAddy, N.D. ( 1969 ) Rearing the forest tent caterpillar on and artificial diet. Journal of Economic Entomology, 62, 270 – 271.en_US
dc.identifier.citedreferenceAnten, N.P.R., Alcala‐Herrera, R., Schieving, F. & Onoda, Y. ( 2010 ) Wind and mechanical stimuli differentially affect leaf traits in Plantago major. New Phytologist, 188, 554 – 564.en_US
dc.identifier.citedreferenceAwmack, C.S. & Leather, S.R. ( 2002 ) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47, 817 – 844.en_US
dc.identifier.citedreferenceBarbehenn, R.V., Jones, C.P., Yip, L. et al. ( 2007 ) Limited impact of elevated levels of polyphenol oxidase on tree‐feeding caterpillars: assessing individual plant defenses with transgenic poplar. Oecologia, 154, 129 – 140.en_US
dc.identifier.citedreferenceBarbehenn, R.V., Dukatz, C., Holt, C. et al. ( 2010 ) Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia, 164, 993 – 1004.en_US
dc.identifier.citedreferenceBarbehenn, R.V., Niewiadomski, J., Kochmanski, J. & Constabel, C.P. ( 2012 ) Limited effect of reactive oxygen species on the composition of susceptible essential amino acids in the midguts of Lymantria dispar caterpillars. Archives of Insect Biochemistry and Physiology, 81, 160 – 177.en_US
dc.identifier.citedreferenceBarbehenn, R.V., Niewiadomski, J., Pecci, C. & Salminen, J.‐P. ( 2013a ) Physiological benefits of feeding in the spring by Lymantria dispar caterpillars on red oak and sugar maple leaves: nutrition versus oxidative stress. Chemoecology, 23, 59 – 70.en_US
dc.identifier.citedreferenceBarbehenn, R.V., Niewiadomski, J. & Kochmanski, J. ( 2013b ) Importance of protein quality versus quantity in alternative host plants for a leaf‐feeding insect herbivore. Oecologia, 173, 1 – 12.en_US
dc.identifier.citedreferenceBarbehenn, R.V., Haugberg, N., Kochmanski, J. et al. ( 2014 ) Physiological factors affecting the rapid decrease in protein assimilation efficiency by a caterpillar on newly‐mature tree leaves. Physiological Entomology, 39, 69 – 79.en_US
dc.identifier.citedreferenceBarbehenn, R.V., Knister, J., Marsik, F. et al. ( 2015 ) Nutrients are assimilated efficiently by Lymantria dispar caterpillars from the mature leaves of trees in the Salicaceae. Physiological Entomology, 40, 72 – 81.en_US
dc.identifier.citedreferenceBehmer, S.T. ( 2009 ) Insect herbivore nutrient regulation. Annual Review of Entomology, 54, 165 – 187.en_US
dc.identifier.citedreferenceBrisson, L.F., Tenhaken, R. & Lamb, C. ( 1994 ) Function of oxidative cross‐linking of cell wall structural proteins in plant disease resistance. Plant Cell, 6, 1703 – 1712.en_US
dc.identifier.citedreferenceChoong, M.R. ( 1996 ) What makes a leaf tough and how this affects the pattern of Castanopsis fissa leaf consumption by caterpillars. Functional Ecology, 10, 668 – 674.en_US
dc.identifier.citedreferenceCipollini, D.F. ( 1997 ) Wind‐induced mechanical stimulation increases pest resistance in common bean. Oecologia, 111, 84 – 90.en_US
dc.identifier.citedreferenceCipollini, D.F. & Redman, A.M. ( 1999 ) Age‐dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato. Journal of Chemical Ecology, 25, 271 – 281.en_US
dc.identifier.citedreferenceClissold, F.J., Sanson, G.D. & Read, J. ( 2006 ) The paradoxical effects of nutrient ratios and supply rates on an outbreaking insect herbivore, the Australian plague locust. Journal of Animal Ecology, 75, 1000 – 1003.en_US
dc.identifier.citedreferenceClissold, F.J., Sanson, G.D., Read, J. & Simpson, S.J. ( 2009 ) Gross vs. net income: how plant toughness affects performance of an insect herbivore. Ecology, 90, 3393 – 3405.en_US
dc.identifier.citedreferenceColey, P.D., Bateman, M.L. & Kursar, T.A. ( 2006 ) The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos, 115, 219 – 228.en_US
dc.identifier.citedreferenceCoyle, D.R., McMillin, J.D., Hall, R.B. & Hart, E.R. ( 2002 ) Deployment of tree resistance to insects in short‐rotation Populus plantations. Mechanisms and Deployment of Resistance in Trees to Insects (ed. by M. R. Wagner, K. M. Clancy, F. Lieutier and T. D. Paine ), pp. 189 ‐ 215. Kluwer Academic Publishers, New York, New York.en_US
dc.identifier.citedreferenceDence, C.W. ( 1992 ) The determination of lignin. Methods in Lignin Chemistry (ed. by S.Y. Lin and C.W. Dence ), pp. 33 ‐ 61. Springer‐Verlag, New York, New York.en_US
dc.identifier.citedreferenceDoblin, M.S., Vergara, C.E., Read, S. et al. ( 2003 ) Plant cell wall biosynthesis: making the bricks. The Plant Cell Wall (ed. by J. K. C. Rose ), pp. 183 ‐ 222. Blackwell, U.K.en_US
dc.identifier.citedreferenceFeeny, P.P. ( 1970 ) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology, 51, 565 – 581.en_US
dc.identifier.citedreferenceGiovanelli, J. ( 1987 ) Sulfur amino acids of plants: an overview. Methods in Enzymology, 143, 419 – 426.en_US
dc.identifier.citedreferenceHaruta, M., Major, I.T., Christopher, M.E. et al. ( 2001 ) A Kunitz trypsin inhibitor gene family from trembling aspen ( Populus tremuloides Michx.): cloning, functional expression, and induction by wounding and herbivory. Plant Molecular Biology, 46, 347 – 359.en_US
dc.identifier.citedreferenceHorie, Y., Nakasone, S., Watanabe, K. et al. ( 1985 ) Daily ingestion and utilization of various kinds of nutrients by the silkworm, Bombyx mori (Lepidoptera, Bombycidae). Applied Entomology and Zoology, 20, 159 – 172.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.