Show simple item record

Shared Epitope–Antagonistic Ligands: A New Therapeutic Strategy in Mice With Erosive Arthritis

dc.contributor.authorLing, Songen_US
dc.contributor.authorLiu, Yingen_US
dc.contributor.authorFu, Jiaqien_US
dc.contributor.authorColletta, Alessandroen_US
dc.contributor.authorGilon, Chaimen_US
dc.contributor.authorHoloshitz, Josephen_US
dc.date.accessioned2015-08-05T16:47:35Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-05en_US
dc.identifier.citationLing, Song; Liu, Ying; Fu, Jiaqi; Colletta, Alessandro; Gilon, Chaim; Holoshitz, Joseph (2015). "Shared Epitope–Antagonistic Ligands: A New Therapeutic Strategy in Mice With Erosive Arthritis." Arthritis & Rheumatology 67(8): 2061-2070.en_US
dc.identifier.issn2326-5191en_US
dc.identifier.issn2326-5205en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112271
dc.publisherWiley Periodicals, Inc.en_US
dc.titleShared Epitope–Antagonistic Ligands: A New Therapeutic Strategy in Mice With Erosive Arthritisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelRheumatologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112271/1/art39158.pdf
dc.identifier.doi10.1002/art.39158en_US
dc.identifier.sourceArthritis & Rheumatologyen_US
dc.identifier.citedreferenceHoloshitz J. The quest for better understanding of HLA‐disease association: scenes from a road less travelled by. Discov Med 2013; 16: 93 – 101.en_US
dc.identifier.citedreferenceJoosten LA, Helsen MM, Saxne T, van de Loo FA, Heinegard D, van den Berg WB. IL‐1αβ blockade prevents cartilage and bone destruction in murine type II collagen‐induced arthritis, whereas TNF‐α blockade only ameliorates joint inflammation. J Immunol 1999; 163: 5049 – 55.en_US
dc.identifier.citedreferenceBinder NB, Puchner A, Niederreiter B, Hayer S, Leiss H, Bluml S, et al. Tumor necrosis factor–inhibiting therapy preferentially targets bone destruction but not synovial inflammation in a tumor necrosis factor–driven model of rheumatoid arthritis. Arthritis Rheum 2013; 65: 608 – 17.en_US
dc.identifier.citedreferenceBackhaus M, Burmester GR, Sandrock D, Loreck D, Hess D, Scholz A, et al. Prospective two year follow up study comparing novel and conventional imaging procedures in patients with arthritic finger joints. Ann Rheum Dis 2002; 6: 895 – 904.en_US
dc.identifier.citedreferenceDe Almeida DE, Holoshitz J. MHC molecules in health and disease: at the cusp of a paradigm shift. Self Nonself 2011; 2: 43 – 8.en_US
dc.identifier.citedreferenceTakemura Y, Ouchi N, Shibata R, Aprahamian T, Kirber MT, Summer RS, et al. Adiponectin modulates inflammatory reactions via calreticulin receptor‐dependent clearance of early apoptotic bodies. J Clin Invest 2007; 117: 375 – 86.en_US
dc.identifier.citedreferenceGiles JT, van der Heijde DM, Bathon JM. Association of circulating adiponectin levels with progression of radiographic joint destruction in rheumatoid arthritis. Ann Rheum Dis 2011; 70: 1562 – 8.en_US
dc.identifier.citedreferenceJung MY, Kim HS, Hong HJ, Youn BS, Kim TS. Adiponectin induces dendritic cell activation via PLCγ/JNK/NF‐κB pathways, leading to Th1 and Th17 polarization. J Immunol 2012; 188: 2592 – 601.en_US
dc.identifier.citedreferenceKanazawa I. Adiponectin in metabolic bone disease. Curr Med Chem 2012; 19: 5481 – 92.en_US
dc.identifier.citedreferenceGoicoechea S, Orr AW, Pallero MA, Eggleton P, Murphy‐Ullrich JE. Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J Biol Chem 2000; 275: 36358 – 68.en_US
dc.identifier.citedreferenceVallejo AN, Mugge LO, Klimiuk PA, Weyand CM, Goronzy JJ. Central role of thrombospondin‐1 in the activation and clonal expansion of inflammatory T cells. J Immunol 2000; 164: 2947 – 54.en_US
dc.identifier.citedreferenceRico MC, Rough JJ, Del Carpio‐Cano FE, Kunapuli SP, DeLa Cadena RA. The axis of thrombospondin‐1, transforming growth factor β and connective tissue growth factor: an emerging therapeutic target in rheumatoid arthritis. Curr Vasc Pharmacol 2010; 8: 338 – 43.en_US
dc.identifier.citedreferenceYang K, Vega JL, Hadzipasic M, Schatzmann Peron JP, Zhu B, Carrier Y, et al. Deficiency of thrombospondin‐1 reduces Th17 differentiation and attenuates experimental autoimmune encephalomyelitis. J Autoimmun 2009; 32: 94 – 103.en_US
dc.identifier.citedreferenceCarron JA, Walsh CA, Fraser WD, Gallagher JA. Thrombospondin promotes resorption by osteoclasts in vitro. Biochem Biophys Res Commun 1995; 213: 1017 – 25.en_US
dc.identifier.citedreferenceKorendowych E, Dixey J, Cox B, Jones S, McHugh N. The influence of the HLA‐DRB1 rheumatoid arthritis shared epitope on the clinical characteristics and radiological outcome of psoriatic arthritis. J Rheumatol 2003; 30: 96 – 101.en_US
dc.identifier.citedreferenceMarotte H, Farge P, Gaudin P, Alexandre C, Mougin B, Miossec P. The association between periodontal disease and joint destruction in rheumatoid arthritis extends the link between the HLA‐DR shared epitope and severity of bone destruction. Ann Rheum Dis 2006; 65: 905 – 9.en_US
dc.identifier.citedreferenceChan MT, Owen P, Dunphy J, Cox B, Carmichael C, Korendowych E, et al. Associations of erosive arthritis with anti‐cyclic citrullinated peptide antibodies and MHC Class II alleles in systemic lupus erythematosus. J Rheumatol 2008; 35: 77 – 83.en_US
dc.identifier.citedreferenceJawaheer D, Thomson W, MacGregor AJ, Carthy D, Davidson J, Dyer PA, et al. “Homozygosity” for the HLA–DR shared epitope contributes the highest risk for rheumatoid arthritis concordance in identical twins. Arthritis Rheum 1994; 37: 681 – 6.en_US
dc.identifier.citedreferenceGregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis: an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987; 30: 1205 – 13.en_US
dc.identifier.citedreferenceGonzalez‐Gay MA, Garcia‐Porrua C, Hajeer AH. Influence of human leukocyte antigen‐DRB1 on the susceptibility and severity of rheumatoid arthritis. Semin Arthritis Rheum 2002; 31: 355 – 60.en_US
dc.identifier.citedreferenceMattey DL, Hassell AB, Dawes PT, Cheung NT, Poulton KV, Thomson W, et al. Independent association of rheumatoid factor and the HLA–DRB1 shared epitope with radiographic outcome in rheumatoid arthritis. Arthritis Rheum 2001; 44: 1529 – 33.en_US
dc.identifier.citedreferencePlant MJ, Jones PW, Saklatvala J, Ollier WE, Dawes PT. Patterns of radiological progression in early rheumatoid arthritis: results of an 8 year prospective study. J Rheumatol 1998; 25: 417 – 26.en_US
dc.identifier.citedreferenceWeyand CM, Goronzy JJ. Disease mechanisms in rheumatoid arthritis: gene dosage effect of HLA‐DR haplotypes. J Lab Clin Med 1994; 124: 335 – 8.en_US
dc.identifier.citedreferenceLing S, Cheng A, Pumpens P, Michalak M, Holoshitz J. Identification of the rheumatoid arthritis shared epitope binding site on calreticulin. PLoS One 2010; 5: e11703.en_US
dc.identifier.citedreferenceDe Almeida DE, Ling S, Pi X, Hartmann‐Scruggs AM, Pumpens P, Holoshitz J. Immune dysregulation by the rheumatoid arthritis shared epitope. J Immunol 2010; 185: 1927 – 34.en_US
dc.identifier.citedreferenceLing S, Cline EN, Haug TS, Fox DA, Holoshitz J. Citrullinated calreticulin potentiates rheumatoid arthritis shared epitope signaling. Arthritis Rheum 2013; 65: 618 – 26.en_US
dc.identifier.citedreferenceLing S, Lai A, Borschukova O, Pumpens P, Holoshitz J. Activation of nitric oxide signaling by the rheumatoid arthritis shared epitope. Arthritis Rheum 2006; 54: 3423 – 32.en_US
dc.identifier.citedreferenceLing S, Li Z, Borschukova O, Xiao L, Pumpens P, Holoshitz J. The rheumatoid arthritis shared epitope increases cellular susceptibility to oxidative stress by antagonizing an adenosine‐mediated anti‐oxidative pathway. Arthritis Res Ther 2007; 9: R5.en_US
dc.identifier.citedreferenceLing S, Pi X, Holoshitz J. The rheumatoid arthritis shared epitope triggers innate immune signaling via cell surface calreticulin. J Immunol 2007; 179: 6359 – 67.en_US
dc.identifier.citedreferenceFu J, Ling S, Liu Y, Yang J, Naveh S, Hannah M, et al. A small shared epitope‐mimetic compound potently accelerates osteoclast‐mediated bone damage in autoimmune arthritis. J Immunol 2013; 191: 2096 – 103.en_US
dc.identifier.citedreferenceHoloshitz J, Liu Y, Fu J, Joseph J, Ling S, Colletta A, et al. An HLA‐DRB1‐coded signal transduction ligand facilitates inflammatory arthritis: a new mechanism of autoimmunity. J Immunol 2013; 190: 48 – 57.en_US
dc.identifier.citedreferenceGravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 2000; 43: 250 – 8.en_US
dc.identifier.citedreferenceSchett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol 2012; 8: 656 – 64.en_US
dc.identifier.citedreferenceDe Punder YM, van Riel PL. Rheumatoid arthritis: understanding joint damage and physical disability in RA. Nat Rev Rheumatol 2011; 7: 260 – 1.en_US
dc.identifier.citedreferenceLe Goff B, Berthelot JM, Maugars Y, Heymann D. Osteoclasts in RA: diverse origins and functions. Joint Bone Spine 2013; 80: 586 – 91.en_US
dc.identifier.citedreferenceKim HR, Kim KW, Kim BM, Jung HG, Cho ML, Lee SH. Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell–derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis Rheum 2014; 66: 538 – 48.en_US
dc.identifier.citedreferenceKotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL‐17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103: 1345 – 52.en_US
dc.identifier.citedreferenceSato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 2006; 203: 2673 – 82.en_US
dc.identifier.citedreferenceHurevich M, Tal‐Gan Y, Klein S, Barda Y, Levitzki A, Gilon C. Novel method for the synthesis of urea backbone cyclic peptides using new Alloc‐protected glycine building units. J Pept Sci 2010; 16: 178 – 85.en_US
dc.identifier.citedreferenceNaveh S, Tal‐Gan Y, Ling S, Hoffman A, Holoshitz J, Gilon C. Developing potent backbone cyclic peptides bearing the shared epitope sequence as rheumatoid arthritis drug‐leads. Bioorg Med Chem Lett 2012; 22: 493 – 6.en_US
dc.identifier.citedreferenceFurst DE. The risk of infections with biologic therapies for rheumatoid arthritis. Semin Arthritis Rheum 2010; 39: 327 – 46.en_US
dc.identifier.citedreferenceFridman JS, Scherle PA, Collins R, Burn TC, Li Y, Li J, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol 2010; 184: 5298 – 307.en_US
dc.identifier.citedreferenceStump KL, Lu LD, Dobrzanski P, Serdikoff C, Gingrich DE, Dugan BJ, et al. A highly selective, orally active inhibitor of Janus kinase 2, CEP‐33779, ablates disease in two mouse models of rheumatoid arthritis. Arthritis Res Ther 2011; 13: R68.en_US
dc.identifier.citedreferenceWilliam AD, Lee AC, Poulsen A, Goh KC, Madan B, Hart S, et al. Discovery of the macrocycle (9E)‐15‐(2‐(pyrrolidin‐1‐yl)ethoxy)‐7,12,25‐trioxa‐19,21,24‐triaza‐tetracyclo[18. 3.1.1(2,5).1(14,18)]hexacosa‐1(24),2,4,9,14(26),15,17,20,22‐nonaene (SB1578), a potent inhibitor of janus kinase 2/fms‐like tyrosine kinase‐3 (JAK2/FLT3) for the treatment of rheumatoid arthritis. J Med Chem 2012; 55: 2623 – 40.en_US
dc.identifier.citedreferenceSvendsen P, Andersen CB, Willcox N, Coyle AJ, Holmdahl R, Kamradt T, et al. Tracking of proinflammatory collagen‐specific T cells in early and late collagen‐induced arthritis in humanized mice. J Immunol 2004; 173: 7037 – 45.en_US
dc.identifier.citedreferenceMerky P, Batsalova T, Bockermann R, Dzhambazov B, Sehnert B, Burkhardt H, et al. Visualization and phenotyping of proinflammatory antigen‐specific T cells during collagen‐induced arthritis in a mouse with a fixed collagen type II‐specific transgenic T‐cell receptor β‐chain. Arthritis Res Ther 2010; 12: R155.en_US
dc.identifier.citedreferenceMiellot‐Gafsou A, Biton J, Bourgeois E, Herbelin A, Boissier MC, Bessis N. Early activation of invariant natural killer T cells in a rheumatoid arthritis model and application to disease treatment. Immunology 2010; 130: 296 – 306.en_US
dc.identifier.citedreferenceAbreu JR, Dontje W, Krausz S, de Launay D, van Hennik PB, van Stalborch AM, et al. A Rac1 inhibitory peptide suppresses antibody production and paw swelling in the murine collagen‐induced arthritis model of rheumatoid arthritis. Arthritis Res Ther 2010; 12: R2.en_US
dc.identifier.citedreferenceBruhl H, Cihak J, Niedermeier M, Denzel A, Rodriguez Gomez M, Talke Y, et al. Important role of interleukin‐3 in the early phase of collagen‐induced arthritis. Arthritis Rheum 2009; 60: 1352 – 61.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.