Show simple item record

Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations

dc.contributor.authorChang, Sung‐joonen_US
dc.contributor.authorFerreira, Ana M. G.en_US
dc.contributor.authorRitsema, Jeroenen_US
dc.contributor.authorHeijst, Hendrik J.en_US
dc.contributor.authorWoodhouse, John H.en_US
dc.date.accessioned2015-08-05T16:47:36Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-06en_US
dc.identifier.citationChang, Sung‐joon ; Ferreira, Ana M. G.; Ritsema, Jeroen; Heijst, Hendrik J.; Woodhouse, John H. (2015). "Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations." Journal of Geophysical Research: Solid Earth 120(6): 4278-4300.en_US
dc.identifier.issn2169-9313en_US
dc.identifier.issn2169-9356en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112272
dc.description.abstractWe present a new global whole‐mantle model of isotropic and radially anisotropic S velocity structure (SGLOBE‐rani) based on ~43,000,000 surface wave and ~420,000 body wave travel time measurements, which is expanded in spherical harmonic basis functions up to degree 35. We incorporate crustal thickness perturbations as model parameters in the inversions to properly consider crustal effects and suppress the leakage of crustal structure into mantle structure. This is possible since we utilize short‐period group‐velocity data with a period range down to 16 s, which are strongly sensitive to the crust. The isotropic S velocity model shares common features with previous global S velocity models and shows excellent consistency with several high‐resolution upper mantle models. Our anisotropic model also agrees well with previous regional studies. Anomalous features in our anisotropic model are faster SV velocity anomalies along subduction zones at transition zone depths and faster SH velocity beneath slabs in the lower mantle. The derived crustal thickness perturbations also bring potentially important information about the crustal thickness beneath oceanic crusts, which has been difficult to constrain due to poor access compared with continental crusts.Key PointsWe used a massive and varied data set to constrain radially anisotropic mantle structureWe include crustal thickness perturbations as model parametersWe observe faster SV velocity along subduction slabs in the transition zoneen_US
dc.publisherCambridge Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othercrustal correctionen_US
dc.subject.othermantle structureen_US
dc.subject.othercrustal thicknessen_US
dc.subject.otherradial anisotropyen_US
dc.subject.otherglobal tomographyen_US
dc.titleJoint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112272/1/jgrb51168.pdf
dc.identifier.doi10.1002/2014JB011824en_US
dc.identifier.sourceJournal of Geophysical Research: Solid Earthen_US
dc.identifier.citedreferenceResovsky, J., and J. Trampert ( 2003 ), Using probabilistic seismic tomography to test mantle velocity‐density relationships, Earth Planet. Sci. Lett., 215, 121 – 134.en_US
dc.identifier.citedreferencePulliam, J., and M. K. Sen ( 1998 ), Seismic anisotropy in the core‐mantle transition zone, Geophys. J. Int., 135, 113 – 128.en_US
dc.identifier.citedreferenceRitsema, J. ( 2000 ), Evidence for shear velocity anisotropy in the lowermost mantle beneath the Indian Ocean, Geophys. Res. Lett., 27, 1041 – 1044, doi: 10.1029/1999GL011037.en_US
dc.identifier.citedreferenceRitsema, J., T. Lay, E. J. Garnero, and H. Benz ( 1998 ), Seismic anisotropy in the lowermost mantle beneath the Pacific, Geophys. Res. Lett., 25, 1229 – 1232, doi: 10.1029/98GL00913.en_US
dc.identifier.citedreferenceRitsema, J., H. J. van Heijst, and J. H. Woodhouse ( 2004 ), Global transition zone tomography, J. Geophys. Res., 109, B02302, doi: 10.1029/2003JB002610.en_US
dc.identifier.citedreferenceRitsema, J., H. J. van Heijst, J. H. Woodhouse, and A. Deuss ( 2009 ), Long‐period body wave traveltimes through the crust: Implication for crustal corrections and seismic tomography, Geophys. J. Int., 179, 1255 – 1261.en_US
dc.identifier.citedreferenceRitsema, J., A. Deuss, H. J. van Heijst, and J. H. Woodhouse ( 2011 ), S40RTS: A degree‐40 shear‐velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal‐mode splitting function measurements, Geophys. J. Int., 184, 1223 – 1236.en_US
dc.identifier.citedreferenceRitzwoller, M. H., and A. L. Levshin ( 1998 ), Eurasian surface wave tomography: Group velocities, J. Geophys. Res., 103, 4839 – 4878, doi: 10.1029/97JB02622.en_US
dc.identifier.citedreferenceRobertson, G. S., and J. H. Woodhouse ( 1995 ), Evidence for proportionality of P and S heterogeneity in the lower mantle, Geophys. J. Int., 123, 85 – 116.en_US
dc.identifier.citedreferenceRodi, W. L., P. Glover, T. M. C. Li, and S. S. Alexander ( 1975 ), A fast, accurate method for computing group‐velocity partial derivatives for Rayleigh and Love modes, Bull. Seismol. Soc. Am., 65, 1105 – 1114.en_US
dc.identifier.citedreferenceRussell, S. A., T. Lay, and E. J. Garnero ( 1998 ), Seismic evidence for small‐scale dynamics in the lowermost mantle at the root of the Hawaiian hotspot, Nature, 396, 255 – 258.en_US
dc.identifier.citedreferenceSchaeffer, A. J., and S. Lebedev ( 2013 ), Global shear speed structure of the upper mantle and transition zone, Geophys. J. Int., 194, 417 – 449.en_US
dc.identifier.citedreferenceShapiro, N. M., and M. H. Ritzwoller ( 2002 ), Monte‐Carlo inversion for a global shear‐velocity model of the crust and upper mantle, Geophys. J. Int., 151, 88 – 105.en_US
dc.identifier.citedreferenceSilver, P. G. ( 1996 ), Seismic anisotropy beneath the continents: Probing the depths of geology, Annu. Rev. Earth Planet. Sci., 24, 385 – 432.en_US
dc.identifier.citedreferenceSong, T.‐R. A., and H. Kawakatsu ( 2012 ), Subduction of oceanic asthenosphere: Evidence from sub‐slab seismic anisotropy, Geophys. Res. Lett., 39, L17301, doi: 10.1029/2012GL052639.en_US
dc.identifier.citedreferenceTakeo, A., K. Nishida, T. Isse, H. Kawakatsu, H. Shiobara, H. Sugioka, and T. Kanazawa ( 2013 ), Radially anisotropic structure beneath the Shikoku Basin from broadband surface wave analysis of ocean bottom seismometer records, J. Geophys. Res. Solid Earth, 118, 2878 – 2892, doi: 10.1002/jgrb.50219.en_US
dc.identifier.citedreferenceTakeuchi, H., and M. Saito ( 1972 ), Seismic surface waves, in Methods of Computational Physics, vol. 11, edited by B. A. Bolt, pp. 217 – 295, Academic Press, New York.en_US
dc.identifier.citedreferenceTarduno, J. A., W. V. Sliter, L. Kroenke, M. Leckie, H. Mayer, J. J. Mahoney, R. Musgrave, M. Storey, and E. L. Winterer ( 1991 ), Rapid formation of Ontong Java Plateau by Aptian mantle plume volcanism, Science, 254, 399 – 403.en_US
dc.identifier.citedreferencevan Heijst, H. J., and J. Woodhouse ( 1999 ), Global high‐resolution phase velocity distributions of overtone and fundamental‐mode surface waves determined by mode branch stripping, Geophys. J. Int., 137, 601 – 620.en_US
dc.identifier.citedreferenceVinnik, L. P., L. Breger, and B. Romanowicz ( 1998 ), Anisotropic structures at the base of the Earth's mantle, Nature, 393, 564 – 567.en_US
dc.identifier.citedreferenceVisser, K., J. Trampert, S. Lebedev, and B. L. N. Kennett ( 2008 ), Probability of radial anisotropy in the deep mantle, Earth Planet. Sci. Lett., 270, 241 – 250.en_US
dc.identifier.citedreferenceWoodhouse, J. H. ( 1981 ), A note on the calculation of travel times in a transversely isotropic Earth model, Phys. Earth Planet. Inter., 25, 357 – 359.en_US
dc.identifier.citedreferenceWoodhouse, J. H., and F. A. Dahlen ( 1978 ), The effect of a general aspherical perturbation on the free oscillations of the Earth, Geophys. J. R. Astron. Soc., 53, 335 – 354.en_US
dc.identifier.citedreferenceWoodhouse, J. H., and T. P. Girnius ( 1982 ), The calculation of dΔ/dp and of partial derivatives for travel‐time inversion in transversely isotropic spherical Earth models, in Seismic Discrimination, Semiannual Technical Summary Report to the Defense Advanced Research Projects Agency, pp. 61 – 65, MIT, Lincoln Lab., Lexington, Mass.en_US
dc.identifier.citedreferenceAki, K., and K. Kaminuma ( 1963 ), Phase velocity of Love waves in Japan (part 1): Love waves from the Aleutian shock of March 1957, Bull. Earthquake Res. Inst., 41, 243 – 259.en_US
dc.identifier.citedreferenceAnderson, D. L. ( 1961 ), Elastic wave propagation in layered anisotropic media, J. Geophys. Res., 66, 2953 – 2963, doi: 10.1029/JZ066i009p02953.en_US
dc.identifier.citedreferenceAnderson, D. L. ( 1965 ), Recent evidence concerning the structure and composition of the Earth's mantle, Phys. Chem. Earth, 6, 1 – 131.en_US
dc.identifier.citedreferenceAnderson, O. L., E. Schreiber, R. C. Liebermann, and N. Soga ( 1968 ), Some elastic constant data on minerals relevant to geophysics, Rev. Geophys., 6, 491 – 524, doi: 10.1029/RG006i004p00491.en_US
dc.identifier.citedreferenceAuer, L., L. Boschi, T. W. Becker, T. Nissen‐Meyer, and D. Giardini ( 2014 ), Savani: A variable resolution whole‐mantle model of anisotropic shear velocity variations based on multiple data sets, J. Geophys. Res. Solid Earth, 119, 3006 – 3034, doi: 10.1002/2013JB010773.en_US
dc.identifier.citedreferenceBassin, C., G. Laske, and G. Masters ( 2000 ), The current limits of resolution for surface wave tomography in North America, Eos Trans. AGU, 81, Abstract S12A‐03.en_US
dc.identifier.citedreferenceBeghein, C., and J. Trampert ( 2003 ), Probability density functions for radial anisotropy: Implications for the upper 1200 km of the mantle, Earth Planet. Sci. Lett., 217, 151 – 162.en_US
dc.identifier.citedreferenceBeghein, C., and J. Trampert ( 2004 ), Probability density functions for radial anisotropy from fundamental mode surface wave data and the Neighbourhood Algorithm, Geophys. J. Int., 157, 1163 – 1174.en_US
dc.identifier.citedreferenceBeghein, C., J. Trampert, and H. J. van Heijst ( 2006 ), Radial anisotropy in seismic reference models of the mantle, J. Geophys. Res., 111, B02303, doi: 10.1029/2005JB003728.en_US
dc.identifier.citedreferenceBozdağ, E., and J. Trampert ( 2008 ), On crustal corrections in surface wave tomography, Geophys. J. Int., 172, 1066 – 1082.en_US
dc.identifier.citedreferenceCara, M., and J. J. Lévêque ( 1988 ), Anisotropy of the asthenosphere: The higher mode data of the Pacific revisited, Geophys. Res. Lett., 15, 205 – 208, doi: 10.1029/GL015i003p00205.en_US
dc.identifier.citedreferenceChang, S.‐J., and S. van der Lee ( 2011 ), Mantle plumes and associated flow beneath Arabia and East Africa, Earth Planet. Sci. Lett., 302, 448 – 454.en_US
dc.identifier.citedreferenceChang, S.‐J., S. van der Lee, E. Matzel, and H. Bedle ( 2010 ), Radial anisotropy along the Tethyan margin, Geophys. J. Int., 182, 1013 – 1024.en_US
dc.identifier.citedreferenceChang, S.‐J., A. M. G. Ferreira, J. Ritsema, H. J. van Heijst, and J. H. Woodhouse ( 2014 ), Global radially anisotropic mantle structure from multiple datasets: A review, current challenges, and outlook, Tectonophysics, 617, 1 – 19.en_US
dc.identifier.citedreferenceLove, A. E. H. ( 1927 ), A Treatise on the Theory of Elasticity, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceDebayle, E., and B. L. N. Kennett ( 2000 ), Anisotropy in the Australian upper mantle from Love and Rayleigh waveform inversion, Earth Planet. Sci. Lett., 184, 339 – 351.en_US
dc.identifier.citedreferenceDebayle, E., J.‐J. Lévêque, and M. Cara ( 2001 ), Seismic evidence for a deeply rooted low‐velocity anomaly in the upper mantle beneath the northeastern Afro/Arabian continent, Earth Planet. Sci. Lett., 193, 423 – 436.en_US
dc.identifier.citedreferenceDziewoński, A. M., and D. L. Anderson ( 1981 ), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297 – 356.en_US
dc.identifier.citedreferenceEkström, G. ( 2011 ), A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25‐250 s, Geophys. J. Int., 187, 1668 – 1686.en_US
dc.identifier.citedreferenceEkström, G., and A. M. Dziewoński ( 1998 ), The unique anisotropy of the Pacific upper mantle, Nature, 394, 168 – 172.en_US
dc.identifier.citedreferenceEkström, G., J. Tromp, and E. W. F. Larson ( 1997 ), Measurements and global models of surface wave propagation, J. Geophys. Res., 102, 8137 – 8157, doi: 10.1029/96JB03729.en_US
dc.identifier.citedreferenceFaccenda, M. ( 2014 ), Mid mantle seismic anisotropy around subduction zones, Phys. Earth Planet. Inter., 227, 1 – 19.en_US
dc.identifier.citedreferenceFerreira, A. M. G., J. H. Woodhouse, K. Visser, and J. Trampert ( 2010 ), On the robustness of global radially anisotropic surface wave tomography, J. Geophys. Res., 115, B04313, doi: 10.1029/2009JB006716.en_US
dc.identifier.citedreferenceFord, S., E. J. Garnero, and A. K. McNamara ( 2006 ), A strong lateral shear velocity gradient and anisotropy heterogeneity in the lowermost mantle beneath the southern Pacific, J. Geophys. Res., 111, B03306, doi: 10.1029/2004JB003574.en_US
dc.identifier.citedreferenceFouch, M. J., K. M. Fischer, and M. Wysession ( 2001 ), Lowermost mantle anisotropy beneath the Pacific: Imaging the ousrce of the Hawaiian plume, Earth Planet. Sci. Lett., 190, 167 – 180.en_US
dc.identifier.citedreferenceFrench, S., V. Lekic, and B. Romanowicz ( 2013 ), Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere, Science, 342, 227 – 230.en_US
dc.identifier.citedreferenceFukao, Y., and M. Obayashi ( 2013 ), Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity, J. Geophys. Res. Solid Earth, 118, 5920 – 5938, doi: 10.1002/2013JB010466.en_US
dc.identifier.citedreferenceGu, Y. J., A. L. Lerner‐Lam, A. M. Dziewoński, and G. Ekström ( 2005 ), Deep structure and seismic anisotropy beneath the East Pacific Rise, Earth Planet. Sci. Lett., 232, 259 – 272.en_US
dc.identifier.citedreferenceGung, Y., M. Panning, and B. Romanowicz ( 2003 ), Global anisotropy and the thickness of continents, Nature, 422, 707 – 711.en_US
dc.identifier.citedreferenceHansen, S., A. A. Nyblade, and M. Benoit ( 2012 ), Mantle structure beneath Africa and Arabia from adaptively parameterized P wave tomography: Implications for the origin of Cenozoic Afro‐Arabian tectonism, Earth Planet. Sci. Lett., 319–320, 23 – 34.en_US
dc.identifier.citedreferenceHess, R. ( 1964 ), Seismic anisotropy of the uppermost mantle under the oceans, Nature, 203, 629 – 631.en_US
dc.identifier.citedreferenceIshii, M., and J. Tromp ( 1999 ), Normal‐mode and free‐air grativty constraints on lateral variations in velocity and density of Earth's mantle, Science, 285, 1231 – 1236.en_US
dc.identifier.citedreferenceJung, H., and S.‐I. Karato ( 2001 ), Water‐induced fabric transitions in olivine, Science, 293, 1460 – 1463.en_US
dc.identifier.citedreferenceKarato, S.‐I., H. Jung, I. Katayama, and P. Skemer ( 2008 ), Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies, Annu. Rev. Earth Planet. Sci., 36, 59 – 95.en_US
dc.identifier.citedreferenceKawazoe, T., T. Ohuchi, Y. Nishihara, N. Nishiyama, K. Fujino, and T. Irifune ( 2013 ), Seismic anisotropy in the mantle transition zone induced by shear deformation of wadsleyite, Phys. Earth Planet. Inter., 216, 91 – 98.en_US
dc.identifier.citedreferenceKendall, J.‐M., and P. G. Silver ( 1996 ), Constraints from seismic anisotropy on the nature of the lowermost mantle, Nature, 381, 409 – 412.en_US
dc.identifier.citedreferenceKustowski, B., A. M. Dziewoński, and G. Ekström ( 2007 ), Nonlinear crustal corrections for normal‐mode seismograms, Bull. Seismol. Soc. Am., 97, 1756 – 1762.en_US
dc.identifier.citedreferenceKustowski, B., G. Ekström, and A. M. Dziewoński ( 2008 ), Anisotropic shear‐wave velocity structure of the Earth's mantle: A global model, J. Geophys. Res., 113, B06306, doi: 10.1029/2007JB005169.en_US
dc.identifier.citedreferenceLay, T., and D. Helmberger ( 1983 ), The shear‐wave velocity‐gradient at the base of the mantle, J. Geophys. Res., 88, 8160 – 8170, doi: 10.1029/JB088iB10p08160.en_US
dc.identifier.citedreferenceLay, T., and C. Young ( 1991 ), Analysis of seismic SV waves in the core's penumbra, Geophys. Res. Lett., 18, 1373 – 1376, doi: 10.1029/91GL01691.en_US
dc.identifier.citedreferenceLebedev, S., J. M.‐C. Adam, and T. Meier ( 2013 ), Mapping the Moho with seismic surface waves: A review, resolution analysis, and recommended inversion strategies, Tectonophysics, 609, 377 – 394, doi: 10.1016/j.tecto.2012.12.030.en_US
dc.identifier.citedreferenceLekić, V., and B. Romanowicz ( 2011 ), Inferring upper‐mantle structure by full waveform tomography with the spectral element method, Geophys. J. Int., 185, 799 – 831.en_US
dc.identifier.citedreferenceLekić, V., M. Panning, and B. Romanowicz ( 2010 ), A simple method for improving crustal corrections in waveform tomography, Geophys. J. Int., 182, 265 – 278.en_US
dc.identifier.citedreferenceLévêque, J.‐J., and M. Cara ( 1985 ), Inversion of multimode surface wave data: Evidence for sub‐lithospheric anisotropy, Geophys. J. R. Astron. Soc., 83, 753 – 773.en_US
dc.identifier.citedreferenceMarone, F., and B. Romanowicz ( 2007 ), Non‐linear crustal corrections in high‐resolution regional waveform seismic tomography, Geophys. J. Int., 170, 460 – 467.en_US
dc.identifier.citedreferenceMcEvilly, T. V. ( 1964 ), Central U.S. crust‐upper mantle structure from Love and Rayleigh wave phase velocity inversion, Bull. Seismol. Soc. Am., 54, 1997 – 2015.en_US
dc.identifier.citedreferenceMontagner, J.‐P. ( 1998 ), Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers, Pure Appl. Geophys., 151, 223 – 256.en_US
dc.identifier.citedreferenceMontagner, J.‐P., and D. L. Anderson ( 1989 ), Constrained reference mantle model, Phys. Earth Planet. Inter., 58, 205 – 227.en_US
dc.identifier.citedreferenceMontagner, J.‐P., and B. L. N. Kennett ( 1996 ), How to reconcile body‐wave and normal‐mode reference Earth models, Geophys. J. Int., 125, 229 – 248.en_US
dc.identifier.citedreferenceMontagner, J.‐P., and T. Tanimoto ( 1991 ), Global upper mantle tomography of seismic velocities and anisotropies, J. Geophys. Res., 96, 20,337 – 20,351, doi: 10.1029/91JB01890.en_US
dc.identifier.citedreferenceMooney, W. D., G. Laske, and G. Masters ( 1998 ), CRUST5.1: A global crustal model at 5° × 5°, J. Geophys. Res., 103, 727 – 747, doi: 10.1029/97JB02122.en_US
dc.identifier.citedreferenceMoulik, P., and G. Ekström ( 2014 ), An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long‐period waveforms, Geophys. J. Int., 199, 1713 – 1738.en_US
dc.identifier.citedreferenceNataf, H.‐C., I. Nakanishi, and D. L. Anderson ( 1984 ), Anisotropy and shear‐velocity heterogeneities in the upper mantle, Geophys. Res. Lett., 11, 109 – 112, doi: 10.1029/GL011i002p00109.en_US
dc.identifier.citedreferenceNataf, H.‐C., I. Nakanishi, and D. L. Anderson ( 1986 ), Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy 3. Inversion, J. Geophys. Res., 91, 7261 – 7307, doi: 10.1029/JB091iB07p07261.en_US
dc.identifier.citedreferenceNettles, M., and A. M. Dziewoński ( 2008 ), Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America, J. Geophys. Res., 113, B02303, doi: 10.1029/2006JB004819.en_US
dc.identifier.citedreferenceNishimura, C. E., and D. W. Forsyth ( 1989 ), The anisotropic structure of the upper mantle in the Pacific, Geophys. J. Int., 96, 203 – 229.en_US
dc.identifier.citedreferenceNyblade, A. A. ( 2011 ), The upper‐mantle low‐velocity anomaly beneath Ethiopia, Kenya, and Tanzania: Constraints on the origin of the African superswell in eastern Africa and plate versus plume models of mantle dynamics, Geol. Soc. Am. Spec. Pap., 478, 37 – 50.en_US
dc.identifier.citedreferenceOwens, T. J., and G. Zandt ( 1997 ), Implications of crustal property variations for models of Tibetan plateau evolution, Nature, 387, 37 – 43.en_US
dc.identifier.citedreferencePanning, M., and B. Romanowicz ( 2004 ), Inferences on flow at the base of the Earth's mantle based on seismic anisotropy, Science, 303, 351 – 353.en_US
dc.identifier.citedreferencePanning, M., and B. Romanowicz ( 2006 ), A three‐dimensional radially anisotropic model of shear velocity in the whole mantle, Geophys. J. Int., 167, 361 – 379.en_US
dc.identifier.citedreferencePanning, M. P., V. Lekić, and B. Romanowicz ( 2010 ), Importance of crustal corrections in the development of a new global model of radial anisotropy, J. Geophys. Res., 115, B12325, doi: 10.1029/2010JB007520.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.