Show simple item record

Coordination Assembly of Discoid Nanoparticles

dc.contributor.authorHirai, Kenjien_US
dc.contributor.authorYeom, Bongjunen_US
dc.contributor.authorChang, Shu‐haoen_US
dc.contributor.authorChi, Hangen_US
dc.contributor.authorMansfield, John F.en_US
dc.contributor.authorLee, Byeongduen_US
dc.contributor.authorLee, Sungsiken_US
dc.contributor.authorUher, Ctiraden_US
dc.contributor.authorKotov, Nicholas A.en_US
dc.date.accessioned2015-08-05T16:47:41Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07-27en_US
dc.identifier.citationHirai, Kenji; Yeom, Bongjun; Chang, Shu‐hao ; Chi, Hang; Mansfield, John F.; Lee, Byeongdu; Lee, Sungsik; Uher, Ctirad; Kotov, Nicholas A. (2015). "Coordination Assembly of Discoid Nanoparticles." Angewandte Chemie International Edition 54(31): 8966-8970.en_US
dc.identifier.issn1433-7851en_US
dc.identifier.issn1521-3773en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112281
dc.description.abstractSupramolecular chemistry utilizes coordination bonds to assemble molecular building blocks into a variety of sophisticated constructs. However, traditional coordination assemblies are based on organic compounds that have limited ability to transport charge. Herein, we describe coordination assembly of anisotropic FeS2 pyrite nanoparticles (NPs) that can facilitate charge transport. Zn2+ ions form supramolecular complexes with carboxylate end‐groups on NP surface, leading to multiparticle sheets with liquid‐crystal‐like organization. Conductivity and Hall carrier mobility of the p‐type layered semiconductor films with Zn2+ coordination bridging exceed those known for coordination compounds, some by several orders of magnitude. The nanoscale porosity of the assembled sheets combined with fast hole transport leads to high electrocatalytic activity of the NP films. The coordination assembly of NPs embraces the versatility of several types of building blocks and opens a new design space for self‐organized materials combining nanoscale and supramolecular structural motifs.Zinc ions are the “glue”: FeS2 nanoparticles (NPs) spontaneously assemble into sheets because of coordination bridging between Zn2+ and carboxylate groups on the NP surface. Conductivity and Hall carrier mobility of the p‐type semiconductor films exceed those known for coordination compounds and MOFs. The nanoscale porosity and fast hole transport of assembled sheets leads to high electrocatalytic activity of the NP films.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.othersupramolecular assembliesen_US
dc.subject.otherconductive materialsen_US
dc.subject.othercoordination bonden_US
dc.subject.othernanoparticlesen_US
dc.titleCoordination Assembly of Discoid Nanoparticlesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (USA)en_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, MI 48109 (USA)en_US
dc.contributor.affiliationumElectron Microbeam Analysis Laboratory, University of Michigan, Ann Arbor, MI 48109 (USA)en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, Department of Biomedical Engineering, and Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 (USA)en_US
dc.contributor.affiliationotherDepartment of Chemical Engineering, Myongji University, 116 Myongji‐ro, Cheoin‐gu, Gyeonggi‐do, 449‐728 (South Korea)en_US
dc.contributor.affiliationotherAdvanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112281/1/8966_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112281/2/anie_201502057_sm_miscellaneous_information.pdf
dc.identifier.doi10.1002/anie.201502057en_US
dc.identifier.sourceAngewandte Chemie International Editionen_US
dc.identifier.citedreferenceZ. Tang, Z. Zhang, Y. Wang, S. C. Glotzer, N. A. Kotov, Science 2006, 314, 274 – 278.en_US
dc.identifier.citedreferenceC. Schliehe, B. H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, H. Weller, Science 2009, 329, 550 – 553.en_US
dc.identifier.citedreferenceA. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, C. B. Murray, Nature 2010, 466, 474 – 477.en_US
dc.identifier.citedreferenceJ.‐M. Lehn, Science 2002, 295, 2400 – 2403.en_US
dc.identifier.citedreferenceM. Fujita, Chem. Soc. Rev. 1998, 27, 417 – 425.en_US
dc.identifier.citedreferenceD. Philp, J. Stoddart, Angew. Chem. Int. Ed. Engl. 1996, 35, 1154 – 1196; Angew. Chem. 1996, 108, 1242 – 1286.en_US
dc.identifier.citedreferenceE. Shevchenko, D. Talapin, N. A. Kotov, S. O’Brien, C. Murray, Nature 2006, 439, 55 – 59.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceZ. Tang, N. A. Kotov, Science 2002, 297, 237 – 240;en_US
dc.identifier.citedreferenceT. Ni, D. K. Nagesha, J. Robles, N. Materer, S. Müssig, N. A. Kotov, J. Am. Chem. Soc. 2002, 124, 3980 — 3992.en_US
dc.identifier.citedreferenceM. Yuan, D. Zhitomirsky, V. Adinolfi, O. Voznyy, K. W. Kemp, Z. Ning, X. Lan, J. Xu, J. Y. Kim, H. Dong, E. H. Sargent, Adv. Mater. 2013, 25, 5586 – 5592.en_US
dc.identifier.citedreferenceS. Satyabrata, A. Kotal, T. K. Mandal, J. Phys. Chem. C 2007, 111, 1248 – 1255.en_US
dc.identifier.citedreferenceA. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov, K. J. M. Bishop, B. A. Grzybowski, Science 2006, 312, 420 – 424.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceD. V. Talapin, E. V. Shevchenko, Nano. Lett. 2007, 7, 1213 – 1219;en_US
dc.identifier.citedreferenceS. Shanbhag, N. A. Kotov, J. Phys. Chem. B 2006, 110, 12211 — 12217.en_US
dc.identifier.citedreferenceD. Nykypanchuk, M. M. Maye, D. van der Lelie, O. Gang, Nature 2008, 451, 549 – 552.en_US
dc.identifier.citedreferenceS. Y. Park, A. K. Lytton‐Jean, B. Lee, S. Weigand, G. C. Schatz, C. A. Mirkin, Nature 2008, 451, 553 – 556.en_US
dc.identifier.citedreferenceB. L. Vallee, D. S. Auld, Biochemistry 1990, 29, 5647 – 5659.en_US
dc.identifier.citedreferenceS. Srivastava, A. Santos, K. Critchley, K.‐S. Kim, P. Podsiadlo, K. Sun, J. Lee, C. Xu, G. D. Lilly, S. C. Glotzer, N. A. Kotov, Science 2010, 327, 1355 – 1359.en_US
dc.identifier.citedreferenceN. J. Sanghamitra, T. Ueno, Chem. Commun. 2013, 49, 4114 – 4126.en_US
dc.identifier.citedreferenceS. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita, Y. Nakanishi, Y. Kitagawa, K. Yamaguchi, A. Kobayashi, H. Kitagawa, Inorg. Chem. 2009, 48, 9048 – 9050.en_US
dc.identifier.citedreferenceA. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, M. D. Allendorf, Science 2014, 343, 66 – 69.en_US
dc.identifier.citedreferenceB. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1990, 112, 1546 – 1554.en_US
dc.identifier.citedreferenceJ. I. Park, T. D. Nguyen, G. de Queirós Silveira, J. H. Bahng, S. Srivastava, G. Zhao, K. Sun, P. Zhang, S. C. Glotzer, N. A. Kotov, Nat. Commun. 2014, 5, 3593.en_US
dc.identifier.citedreferenceG. Decher, Science 1997, 277, 1232 – 1237.en_US
dc.identifier.citedreferenceO. Shekhah, H. Wang, T. Strunskus, P. Cyganik, D. Zacher, R. Fischer, C. Wöll, Langmuir 2007, 23, 7440 – 7442.en_US
dc.identifier.citedreferenceM. V. Kovalenko, M. Scheele, D. V. Talapin, Science 2009, 324, 1417 – 1420.en_US
dc.identifier.citedreferenceA. B. Bocarsly, Q. D. Gibson, A. J. Morris, R. P. L’Esperance, Z. M. Detweiler, P. S. Lakkaraju, E. L. Zeitler, T. W. Shaw, ACS Catal. 2012, 2, 1684 – 1692.en_US
dc.identifier.citedreferenceH. Kim, C. Lee, Angew. Chem. Int. Ed. 2012, 51, 12303 – 12341; Angew. Chem. 2012, 124, 12469 – 12472.en_US
dc.identifier.citedreferenceJ. Liu, B. Lukose, O. Shekhah, H. K. Arslan, P. Weidler, H. Gliemann, S. Bräse, S. Grosjean, A. Godt, X. Feng, K. Müllen, I.‐B. Magdau, T. Heine, C. Wöll, Sci. Rep. 2012, 2, 921.en_US
dc.identifier.citedreferenceE. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, Nature 1998, 394, 539 – 544.en_US
dc.identifier.citedreferenceS. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334 – 2375; Angew. Chem. 2004, 116, 2388 – 2430.en_US
dc.identifier.citedreferenceM. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469 – 472.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.