Show simple item record

The two‐way relationship between ionospheric outflow and the ring current

dc.contributor.authorWelling, D. T.en_US
dc.contributor.authorJordanova, V. K.en_US
dc.contributor.authorGlocer, A.en_US
dc.contributor.authorToth, G.en_US
dc.contributor.authorLiemohn, M. W.en_US
dc.contributor.authorWeimer, D. R.en_US
dc.date.accessioned2015-08-05T16:47:42Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-06en_US
dc.identifier.citationWelling, D. T.; Jordanova, V. K.; Glocer, A.; Toth, G.; Liemohn, M. W.; Weimer, D. R. (2015). "The two‐way relationship between ionospheric outflow and the ring current." Journal of Geophysical Research: Space Physics 120(6): 4338-4353.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112284
dc.description.abstractIt is now well established that the ionosphere, because it acts as a significant source of plasma, plays a critical role in ring current dynamics. However, because the ring current deposits energy into the ionosphere, the inverse may also be true: the ring current can play a critical role in the dynamics of ionospheric outflow. This study uses a set of coupled, first‐principles‐based numerical models to test the dependence of ionospheric outflow on ring current‐driven region 2 field‐aligned currents (FACs). A moderate magnetospheric storm event is modeled with the Space Weather Modeling Framework using a global MHD code (Block Adaptive Tree Solar wind Roe‐type Upwind Scheme, BATS‐R‐US), a polar wind model (Polar Wind Outflow Model), and a bounce‐averaged kinetic ring current model (ring current atmosphere interaction model with self‐consistent magnetic field, RAM‐SCB). Initially, each code is two‐way coupled to all others except for RAM‐SCB, which receives inputs from the other models but is not allowed to feed back pressure into the MHD model. The simulation is repeated with pressure coupling activated, which drives strong pressure gradients and region 2 FACs in BATS‐R‐US. It is found that the region 2 FACs increase heavy ion outflow by up to 6 times over the noncoupled results. The additional outflow further energizes the ring current, establishing an ionosphere‐magnetosphere mass feedback loop. This study further demonstrates that ionospheric outflow is not merely a plasma source for the magnetosphere but an integral part in the nonlinear ionosphere‐magnetosphere‐ring current system.Key PointsRegion 2 field‐aligned currents drive additional ionospheric O+ outflowThis additional outflow feeds the ring current, creating a feedback systemIonospheric outflow is a tightly coupled piece of the M‐I systemen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherMIT Pressen_US
dc.subject.othermagnetosphereen_US
dc.subject.otherring currenten_US
dc.subject.otherionospheric outflowen_US
dc.titleThe two‐way relationship between ionospheric outflow and the ring currenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112284/1/jgra51836.pdf
dc.identifier.doi10.1002/2015JA021231en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSandanger, M., F. Søraas, K. Aarsnes, K. Oksavik, and D. S. Evans ( 2007 ), Loss of relativistic electrons: Evidence for pitch angle scattering by electromagnetic ion cyclotron waves excited by unstable ring current protons, J. Geophys. Res., 112, A12213, doi: 10.1029/2006JA012138.en_US
dc.identifier.citedreferenceTóth, G., D. L. D. Zeeuw, T. I. Gombosi, W. B. Manchester, A. J. Ridley, I. V. Sokolov, and I. I. Roussev ( 2007 ), Sun to thermosphere simulation of the October 28–30, 2003 storm with the Space Weather Modeling Framework, Space Weather, 5, S06003, doi: 10.1029/2006SW000272.en_US
dc.identifier.citedreferenceTsyganenko, N. A. ( 1989 ), A magnetospheric magnetic field model with a warped tail current sheet, Planet. Space Sci., 37, 5 – 20.en_US
dc.identifier.citedreferenceWalker, R. J., M. Ashour‐Abdalla, T. Ogino, V. Peroomian, and R. L. Richard ( 2003 ), Modeling magnetospheric sources, in Earth's Low‐Latitude Boundary Layer, Geophys. Monogr. Ser., vol. 133, edited by P. T. Newell and T. Onsager, pp. 33 – 43, AGU, Washington, D. C., doi: 10.1029/133GM03.en_US
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ), Predicting surface geomagnetic variations using ionospheric electrodynamic models, J. Geophys. Res., 110, A12307, doi: 10.1029/2005JA011270.en_US
dc.identifier.citedreferenceWelling, D. T., and M. W. Liemohn ( 2014 ), Outflow in global magnetohydrodynamics as a function of a passive inner boundary source, J. Geophys. Res. Space Physics, 119, 2691 – 2705, doi: 10.1002/2013JA019374.en_US
dc.identifier.citedreferenceWelling, D. T., and A. J. Ridley ( 2010a ), Exploring sources of magnetospheric plasma using multispecies MHD, J. Geophys. Res., 115, A04201, doi: 10.1029/2009JA014596.en_US
dc.identifier.citedreferenceWelling, D. T., and A. J. Ridley ( 2010b ), Validation of SWMF magnetic field and plasma, Space Weather, 8, S03002, doi: 10.1029/2009JA014596.en_US
dc.identifier.citedreferenceWelling, D. T., V. K. Jordanova, S. G. Zaharia, A. Glocer, and G. Toth ( 2011 ), The effects of dynamic ionospheric outflow on the ring current, J. Geophys. Res., 116, A00J19, doi: 10.1029/2010JA015642.en_US
dc.identifier.citedreferenceWinglee, R. M. ( 1998 ), Multi‐fluid simulations of the magnetosphere: The identification of the geopause and its variation with IMF, Geophys. Res. Lett., 25, 4441 – 4444.en_US
dc.identifier.citedreferenceWinglee, R. M. ( 2000 ), Mapping of ionospheric outflows into the magnetosphere for varying IMF conditions, J. Atmos. Sol. Terr. Phys., 62, 527 – 540.en_US
dc.identifier.citedreferenceWolf, R. A. ( 1983 ), The quasi‐static (slow‐flow) region of the magnetosphere, in Solar Terrestrial Physics, edited by R. L. Carovillano and J. M. Forbes, pp. 303 – 368, D. Reidel Publishing, Hingham, Mass.en_US
dc.identifier.citedreferenceYau, A. W., W. K. Peterson, and E. G. Shelley ( 1988 ), Quantitative parametrization of energetic ionospheric ion outflow, in Modeling Magnetospheric Plasma, Geophys. Monogr. Ser., edited by T. E. Moore et al., pp. 211 – 217, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceYoung, D. T., H. Balsiger, and J. Geiss ( 1982 ), Correlations of magnetospheric ion composition with geomagnetic and solar activity, J. Geophys. Res., 87, 9077 – 9096.en_US
dc.identifier.citedreferenceYu, Y., and A. J. Ridley ( 2008 ), Validation of the space weather modeling framework using ground‐based magnetometers, Space Weather, 6, S05002, doi: 10.1029/2007SW000345.en_US
dc.identifier.citedreferenceYu, Y., V. Jordanova, S. Zaharia, J. Koller, J. Zhang, and L. M. Kistler ( 2012 ), Validation study of the magnetically self‐consistent inner magnetosphere model RAM‐SCB, J. Geophys. Res., 117, A03222, doi: 10.1029/2011JA017321.en_US
dc.identifier.citedreferenceYu, Y., V. Jordanova, D. T. Welling, B. Larsen, S. G. Claudepierre, and C. Kletzing ( 2014 ), The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm, Geophys. Res. Lett., 41, 1126 – 1132, doi: 10.1002/2014GL059322.en_US
dc.identifier.citedreferenceZaharia, S. ( 2008 ), Improved Euler potential method for three‐dimensional magnetospheric equilibrium, J. Geophys. Res., 113, A08221, doi: 10.1029/2008JA013325.en_US
dc.identifier.citedreferenceZaharia, S., C. Cheng, and K. Maezawa ( 2004 ), 3‐D force‐balanced magnetospheric configurations, Ann. Geophys., 22, 251 – 265.en_US
dc.identifier.citedreferenceZaharia, S., M. F. Thomsen, J. Birn, M. H. Denton, V. K. Jordanova, and C. Z. Cheng ( 2005 ), Effect of storm‐time plasma pressure on the magnetic field in the inner magnetosphere, Geophys. Res. Lett., 32, L03102, doi: 10.1029/2004GL021491.en_US
dc.identifier.citedreferenceZaharia, S., V. K. Jordanova, M. F. Thomsen, and G. D. Reeves ( 2006 ), Self‐consistent modeling of magnetic fields and plasmas in the inner magnetosphere: Application to a geomagnetic storm, J. Geophys. Res., 111, A11S14, doi: 10.1029/2006JA011619.en_US
dc.identifier.citedreferenceZaharia, S., V. K. Jordanova, D. T. Welling, and G. Tóth ( 2010 ), Self‐consistent inner magnetosphere simulation driven by a global MHD model, J. Geophys. Res., 115, A12228, doi: 10.1029/2010JA015915.en_US
dc.identifier.citedreferenceZhang, J., et al. ( 2007 ), Understanding storm‐time ring current development through data‐model comparisons of a moderate storm, J. Geophys. Res., 112, A04208, doi: 10.1029/2006JA011846.en_US
dc.identifier.citedreferenceZheng, Y., A. T. Y. Lui, M.‐C. Fok, B. J. Anderson, P. C. Brandt, T. J. Immel, and D. G. Mitchell ( 2006 ), Relationship between Region 2 field‐aligned current and the ring current: Model results, J. Geophys. Res., 111, A11S06, doi: 10.1029/2006JA011603.en_US
dc.identifier.citedreferenceAnderson, B. J., S.‐I. Ohtani, H. Korth, and A. Ukhorskiy ( 2005 ), Storm time dawn‐dusk asymmetry of the large‐scale Birkeland currents, J. Geophys. Res., 110, A12220, doi: 10.1029/2005JA011246.en_US
dc.identifier.citedreferenceAndre, M., and A. Yau ( 1997 ), Theories and observations of ion energization and outflow in the high latitude magnetosphere, Space Sci. Rev., 80, 27 – 48.en_US
dc.identifier.citedreferenceAxford, W. I. ( 1968 ), The polar wind and the terrestrial helium budget, J. Geophys. Res., 73, 6855 – 6859, doi: 10.1029/JA073i021p06855.en_US
dc.identifier.citedreferenceBanks, P. M., and T. E. Holzer ( 1968 ), The polar wind, J. Geophys. Res., 73, 6846 – 6854, doi: 10.1029/JA073i021p06846.en_US
dc.identifier.citedreferenceBarakat, A. R., and R. W. Schunk ( 1983 ), O + ions in the polar wind, J. Geophys. Res., 88 ( A10 ), 7887, doi: 10.1029/JA088iA10p07887.en_US
dc.identifier.citedreferenceBarakat, A. R., H. G. Demars, and R. W. Schunk ( 1998 ), Dynamic features of the polar wind in the presence of hot magnetospheric electrons, J. Geophys. Res., 103 ( A12 ), 29,289 – 29,304, doi: 10.1029/98JA02827.en_US
dc.identifier.citedreferenceBrambles, O. J., W. Lotko, B. Zhang, M. Wiltberger, J. Lyon, and R. J. Strangeway ( 2011 ), Magnetosphere sawtooth oscillations induced by ionospheric outflow, Science, 332 ( 6034 ), 1183 – 1186, doi: 10.1126/science.1202869.en_US
dc.identifier.citedreferenceBrambles, O. J., W. Lotko, B. Zhang, J. Ouellette, J. Lyon, and M. Wiltberger ( 2013 ), The effects of ionospheric outflow on ICME and SIR driven sawtooth events, J. Geophys. Res. Space Physics, 118, 6026 – 6041, doi: 10.1002/jgra.50522.en_US
dc.identifier.citedreferenceBuzulukova, N., M.‐C. Fok, A. Pulkkinen, M. Kuznetsova, T. E. Moore, A. Glocer, P. C. Brandt, G. Tóth, and L. Rastätter ( 2010 ), Dynamics of ring current and electric fields in the inner magnetosphere during disturbed periods: CRCM‐BATS‐R‐US coupled model, J. Geophys. Res., 115, A05210, doi: 10.1029/2009JA014621.en_US
dc.identifier.citedreferenceChappell, C. R., T. E. Moore, and J. H. Waite Jr. ( 1987 ), The ionosphere as a fully adequate source of plasma for the Earth's magnetosphere, J. Geophys. Res., 92, 5896 – 5910.en_US
dc.identifier.citedreferenceChappell, C. R., B. L. Giles, T. E. Moore, D. C. Delcourt, P. D. Craven, and M. O. Chandler ( 2000 ), The adequacy of the ionospheric source in supplying magnetospheric plasma, J. Atmos. Sol. Terr. Phys., 62, 421 – 436.en_US
dc.identifier.citedreferenceChaston, C. C., J. W. Bonnell, C. W. Carlson, J. P. McFadden, R. E. Ergun, R. J. Strangeway, and E. J. Lund ( 2004 ), Auroral ion acceleration in dispersive Alfvén waves, J. Geophys. Res., 109, A04205, doi: 10.1029/2003JA010053.en_US
dc.identifier.citedreferenceChaston, C. C., V. Genot, J. W. Bonnell, C. W. Carlson, J. P. McFadden, R. E. Ergun, R. J. Strangeway, E. J. Lund, and K. J. Hwang ( 2006 ), Ionospheric erosion by Alfvén waves, J. Geophys. Res., 111, A03206, doi: 10.1029/2005JA011367.en_US
dc.identifier.citedreferenceChaston, C. C., C. W. Carlson, J. P. McFadden, R. E. Ergun, and R. J. Strangeway ( 2007 ), How important are dispersive Alfvén waves for auroral particle acceleration?, Geophys. Res. Lett., 34, L07101, doi: 10.1029/2006GL029144.en_US
dc.identifier.citedreferenceCladis, J. B. ( 1986 ), Parallel acceleration and transport of ions from polar ionosphere to plasma sheet, Geophys. Res. Lett., 13, 893 – 896, doi: 10.1029/GL013i009p00893.en_US
dc.identifier.citedreferenceHenderson, M. G. ( 2004 ), The May 2–3, 1986 CDAW‐9C interval: A sawtooth event, Geophys. Res. Lett., 31, L11804, doi: 10.1029/2004GL019941.en_US
dc.identifier.citedreferenceCully, C. M., E. Donovan, A. W. Yau, and G. G. Arkos ( 2003 ), Akebono/Suprathermal Mass Spectrometer observations of low‐energy ion outflow: Dependence on magnetic activity and solar wind conditions, J. Geophys. Res., 108 ( A2 ), 1093, doi: 10.1029/2001JA009200.en_US
dc.identifier.citedreferenceDaglis, I. A., R. M. Thorne, W. Baumjohann, and S. Orsini ( 1999 ), The terrestrial ring current: Origin, formation, and decay, Rev. Geophys., 37, 407 – 438, doi: 10.1029/1999RG900009.en_US
dc.identifier.citedreferenceDelcourt, D. C., J. A. Sauvaud, and T. E. Moore ( 1993 ), Polar wind ion dynamics in the magnetotail, J. Geophys. Res., 98 ( A6 ), 9155 – 9169, doi: 10.1029/93JA00301.en_US
dc.identifier.citedreferenceDenton, M. H., M. F. Thomsen, H. Korth, S. Lynch, J. C. Zhang, and M. W. Liemohn ( 2005 ), Bulk plasma properties at geosynchronous orbit, J. Geophys. Res., 110, A07223, doi: 10.1029/2004JA010861.en_US
dc.identifier.citedreferenceDessler, A. J., and E. N. Parker ( 1959 ), Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64, 2239 – 2252.en_US
dc.identifier.citedreferenceDe Zeeuw, D., S. Sazykin, R. Wolf, T. Gombosi, A. Ridley, and G. Tóth ( 2004 ), Coupling of a global MHD code and an inner magnetosphere model: Initial results, J. Geophys. Res., 109, A12219, doi: 10.1029/2003JA010366.en_US
dc.identifier.citedreferenceDe Zeeuw, D. L., T. I. Gombosi, C. P. T. Groth, K. G. Powell, and Q. F. Stout ( 2000 ), An adaptive MHD method for global space weather simulations, IEEE Trans. Plasma Sci., 28, 1956 – 1965.en_US
dc.identifier.citedreferenceEbihara, Y., and M. Ejiri ( 2000 ), Simulation study on fundamental properties of the storm‐time ring current, J. Geophys. Res., 105, 15,843 – 15,859.en_US
dc.identifier.citedreferenceElliott, H. A., R. H. Comfort, P. D. Craven, M. O. Chandler, and T. E. Moore ( 2001 ), Solar wind influence on the oxygen content of ion outflow in the high‐altitude polar cap during solar minimum conditions, J. Geophys. Res., 106 ( A4 ), 6067 – 6084, doi: 10.1029/2000JA003022.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, J. U. Kozyra, D. S. Evans, A. D. DeJong, and B. A. Emery ( 2007a ), Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms: 1. Patterns, J. Geophys. Res., 112, A05301, doi: 10.1029/2006JA011867.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, J. U. Kozyra, and D. S. Evans ( 2007b ), Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms: 2. Conductances and beam spreading, J. Geophys. Res., 112, A05302, doi: 10.1029/2006JA012113.en_US
dc.identifier.citedreferenceFang, X., A. J. Ridley, M. W. Liemohn, J. U. Kozyra, and D. S. Evans ( 2007c ), Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms: 3. Impact on the ionosphere and thermosphere, J. Geophys. Res., 112, A07310, doi: 10.1029/2006JA012144.en_US
dc.identifier.citedreferenceFok, M., T. E. Moore, J. U. Kozyra, G. C. Ho, and D. C. Hamilton ( 1995 ), Three‐dimensional ring current decay model, J. Geophys. Res., 100, 9619 – 9632.en_US
dc.identifier.citedreferenceFok, M.‐C., T. E. Moore, S. P. Slinker, J. A. Fedder, D. C. Delcourt, M. Nosé, and S.‐H. Chen ( 2011 ), Modeling the superstorm in November 2003, J. Geophys. Res., 116, A00J17, doi: 10.1029/2010JA015720.en_US
dc.identifier.citedreferenceFrey, H. U. ( 2004 ), Subauroral morning proton spots (SAMPS) as a result of plasmapause‐ring‐current interaction, J. Geophys. Res., 109, A10305, doi: 10.1029/2004JA010516.en_US
dc.identifier.citedreferenceGaland, M., and A. D. Richmond ( 2001 ), Ionospheric electrical conductances produced by auroral proton precipitation, J. Geophys. Res., 106 ( A1 ), 117 – 125, doi: 10.1029/1999JA002001.en_US
dc.identifier.citedreferenceGanguli, S. B. ( 1996 ), The polar wind, Rev. Geophys., 34, 311 – 348, doi: 10.1029/96RG00497.en_US
dc.identifier.citedreferenceGlocer, A., T. Gombosi, G. Toth, K. Hansen, A. Ridley, and A. Nagy ( 2007 ), Polar wind outflow model: Saturn results, J. Geophys. Res., A01304, doi: 10.1029/2006JA011755.en_US
dc.identifier.citedreferenceGlocer, A., G. Tóth, T. Gombosi, and D. T. Welling ( 2009a ), Modeling ionospheric outflows and their impact on the magnetosphere, initial results, J. Geophys. Res., 114, A05216, doi: 10.1029/2009JA014053.en_US
dc.identifier.citedreferenceGlocer, A., G. Tóth, T. Ma, Y. Gombosi, J. Zhang, and L. Kistler ( 2009b ), Multi‐fluid BATS‐R‐US: Magnetospheric composition and dynamics during geomagnetic storms, initial results, J. Geophys. Res., 114, A12203, doi: 10.1029/2009JA014418.en_US
dc.identifier.citedreferenceGlocer, A., N. Kitamura, G. Toth, and T. Gombosi ( 2012 ), Modeling solar zenith angle effects on the polar wind, J. Geophys. Res., 117, A04318, doi: 10.1029/2011JA017136.en_US
dc.identifier.citedreferenceGlocer, A., M. Fok, X. Meng, G. Toth, N. Buzulukova, S. Chen, and K. Lin ( 2013 ), CRCM + BATS‐R‐US two‐way coupling, J. Geophys. Res. Space Physics, 118, 1635 – 1650, doi: 10.1002/jgra.50221.en_US
dc.identifier.citedreferenceGombosi, T. I., and A. Nagy ( 1989 ), Time‐dependent modeling of field‐aligned current‐generated ion transients in the polar wind, J. Geophys. Res., 94, 359 – 369.en_US
dc.identifier.citedreferenceGombosi, T. I., D. L. De Zeeuw, C. P. T. Groth, K. G. Powell, and P. Song ( 1998 ), The length of the magnetotail for northward IMF: Results of 3D MHD simulations, in Physics of Space Plasmas, vol. 15, edited by T. Chang and J. R. Jasperse, pp. 121 – 128, MIT Press, Cambridge, Mass.en_US
dc.identifier.citedreferenceHaines, G. V. ( 1985 ), Spherical cap harmonic analysis, J. Geophys. Res., 90 ( B3 ), 2583 – 2591.en_US
dc.identifier.citedreferenceHamilton, D. C., G. Gloeckler, F. M. Ipavich, W. Stüdemann, B. Wilken, and G. Kremser ( 1988 ), Ring current development during the great geomagnetic storm of February 1986, J. Geophys. Res., 93 ( A12 ), 14,343 – 14,355, doi: 10.1029/JA093iA12p14343.en_US
dc.identifier.citedreferenceHorwitz, J. L., C. W. Ho, H. D. Scarbro, G. R. Wilson, and T. E. Moore ( 1994 ), Centrifugal acceleration of the polar wind, J. Geophys. Res., 99 ( A8 ), 15,051 – 15,064, doi: 10.1029/94JA00924.en_US
dc.identifier.citedreferenceHuddleston, M. M., C. R. Chappell, D. C. Delcourt, T. E. Moore, B. L. Giles, and M. O. Chandler ( 2005 ), An examination of the process and magnitude of ionospheric plasma supply to the magnetosphere, J. Geophys. Res., 110, A12202, doi: 10.1029/2004JA010401.en_US
dc.identifier.citedreferenceIlie, R., R. M. Skoug, P. Valek, H. O. Funsten, and A. Glocer ( 2013 ), Global view of inner magnetosphere composition during storm time, J. Geophys. Res. Space Physics, 118, 7074 – 7084, doi: 10.1002/2012JA018468.en_US
dc.identifier.citedreferenceJordanova, V., L. Kistler, J. Kozyra, G. Khazanov, and A. Nagy ( 1996 ), Collisional losses of ring current ions, J. Geophys. Res., 101, 111 – 126.en_US
dc.identifier.citedreferenceJordanova, V. K., J. U. Kozyra, A. F. Nagy, and G. V. Khazanov ( 1997 ), Kinetic model of the ring current‐atmosphere interactions, J. Geophys. Res., 102, 14,279 – 14,291.en_US
dc.identifier.citedreferenceJordanova, V. K., Y. S. Miyoshi, S. Zaharia, M. F. Thomsen, G. D. Reeves, D. S. Evans, C. G. Mouikis, and J. F. Fennell ( 2006 ), Kinetic simulations of ring current evolution during the Geospace Environment Modeling challenge events, J. Geophys. Res., 111, A11S10, doi: 10.1029/2006JA011644.en_US
dc.identifier.citedreferenceJordanova, V. K., J. Albert, and Y. Miyoshi ( 2008 ), Relativistic electron precipitation by EMIC waves from self‐consistent global simulations, J. Geophys. Res., 113, A00A10, doi: 10.1029/2008JA013239.en_US
dc.identifier.citedreferenceJordanova, V. K., S. Zaharia, and D. T. Welling ( 2010a ), Comparative study of ring current development using empirical, dipolar, and self‐consistent magnetic field simulations, J. Geophys. Res., 115, A00J11, doi: 10.1029/2010JA015671.en_US
dc.identifier.citedreferenceJordanova, V. K., R. M. Thorne, W. Li, and Y. Miyoshi ( 2010b ), Excitation of whistler mode chorus from global ring current simulations, J. Geophys. Res., 115, A00F10, doi: 10.1029/2009JA014810.en_US
dc.identifier.citedreferenceJordanova, V. K., Y. Yu, J. T. Niehof, R. M. Skoug, G. D. Reeves, C. A. Kletzing, J. F. Fennell, and H. E. Spence ( 2014 ), Simulations of inner magnetosphere dynamics with an expanded RAM‐SCB model and comparisons with Van Allen Probes observations, Geophys. Res. Lett., 41, 2687 – 2694, doi: 10.1002/2014GL059533.en_US
dc.identifier.citedreferenceKhazanov, G. V., M. W. Liemohn, and T. E. Moore ( 1997 ), Photoelectron effects on the self‐consistent potential in the collisionless polar wind, J. Geophys. Res., 102 ( A4 ), 7509 – 7521, doi: 10.1029/96JA03343.en_US
dc.identifier.citedreferenceKorth, H., L. Rastätter, B. J. Anderson, and A. J. Ridley ( 2011 ), Comparison of the observed dependence of large‐scale Birkeland currents on solar wind parameters with that obtained from global simulations, Ann. Geophys., 29 ( 10 ), 1809 – 1826, doi: 10.5194/angeo‐29‐1809‐2011.en_US
dc.identifier.citedreferenceKozyra, J. U. ( 2002 ), Multistep D s t development and ring current composition changes during the 4–6 June 1991 magnetic storm, J. Geophys. Res., 107 ( A8 ), 1224, doi: 10.1029/2001JA000023.en_US
dc.identifier.citedreferenceKozyra, J. U., M.‐C. Fok, E. R. Sanchez, D. S. Evans, D. C. Hamilton, and A. F. Nagy ( 1998 ), The role of precipitation losses in producing the rapid early recovery phase of the great magnetic storm of February 1986, J. Geophys. Res., 103 ( A4 ), 6801 – 6814.en_US
dc.identifier.citedreferenceKronberg, E. A., S. E. Haaland, P. W. Daly, E. E. Grigorenko, L. M. Kistler, M. Fränz, and I. Dandouras ( 2012 ), Oxygen and hydrogen ion abundance in the near‐Earth magnetosphere: Statistical results on the response to the geomagnetic and solar wind activity conditions, J. Geophys. Res., 117, A12208, doi: 10.1029/2012JA018071.en_US
dc.identifier.citedreferenceLennartsson, O. W., H. L. Collin, and W. K. Peterson ( 2004 ), Solar wind control of Earth's H + and O + outflow rates in the 15‐eV to 33‐keV energy range, J. Geophys. Res., 109, A12212, doi: 10.1029/2004JA010690.en_US
dc.identifier.citedreferenceLennartsson, W., and E. G. Shelley ( 1986 ), Survey of 0.1‐ to 16‐keV/e plasma sheet ion composition, J. Geophys. Res., 91, 3061 – 3076.en_US
dc.identifier.citedreferenceLiemohn, M. W., J. U. Kozyra, V. K. Jordanova, G. V. Khazanov, M. F. Thomsen, and T. E. Cayton ( 1999 ), Analysis of early phase ring current recovery mechanisms during geomagnetic storms, Geophys. Res. Lett., 26, 2845 – 2848.en_US
dc.identifier.citedreferenceLiemohn, M. W., J. U. Kozyra, C. R. Clauer, and A. J. Ridley ( 2001 ), Computational analysis of the near‐Earth magnetospheric current system during two‐phase decay storms, J. Geophys. Res., 106, 29,531 – 29,542.en_US
dc.identifier.citedreferenceMa, Y., A. F. Nagy, K. C. Hansen, D. L. De Zeeuw, T. I. Gombosi, and K. Powell ( 2002 ), Three‐dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields, J. Geophys. Res., 107 ( A10 ), 1282, doi: 10.1029/2002JA009293.en_US
dc.identifier.citedreferenceMoore, T., M.‐C. Fok, D. Delcourt, S. Slinker, and J. Fedder ( 2007 ), Global aspects of solar wind‐ionosphere interactions, J. Atmos. Sol. Terr. Phys., 69 ( 3 ), 265 – 278, doi: 10.1016/j.jastp.2006.08.009.en_US
dc.identifier.citedreferenceMoore, T., M.‐C. Fok, and K. Garcia‐Sage ( 2014 ), The ionospheric outflow feedback loop, J. Atmos. Sol. Terr. Phys., 115‐116, 59 – 66, doi: 10.1016/j.jastp.2014.02.002.en_US
dc.identifier.citedreferenceMoore, T. E. ( 2005 ), Plasma sheet and (nonstorm) ring current formation from solar and polar wind sources, J. Geophys. Res., 110, A02210, doi: 10.1029/2004JA010563.en_US
dc.identifier.citedreferenceMoore, T. E., and D. C. Delcourt ( 1995 ), The geopause, Rev. Geophys., 33, 175 – 210, doi: 10.1029/95RG00872.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231 ( 3 ), 870 – 903, doi: 10.1016/j.jcp.2011.02.006.en_US
dc.identifier.citedreferenceMoore, T. E., W. K. Peterson, C. T. Russell, M. O. Chandler, M. R. Collier, H. L. Collin, P. D. Craven, R. Fitzenreiter, B. L. Giles, and C. J. Pollock ( 1999 ), Ionospheric mass ejection in response to a CME, Geophys. Res. Lett., 26, 2339 – 2342.en_US
dc.identifier.citedreferenceNorqvist, P., M. André, and M. Tyrland ( 1998 ), A statistical study of ion energization mechanisms in the auroral region, J. Geophys. Res., 103 ( A10 ), 23,459 – 23,473, doi: 10.1029/98JA02076.en_US
dc.identifier.citedreferenceNosé, M. ( 2005 ), Overwhelming O + contribution to the plasma sheet energy density during the October 2003 superstorm: Geotail/EPIC and IMAGE/LENA observations, J. Geophys. Res., 110, A09S24, doi: 10.1029/2004JA010930.en_US
dc.identifier.citedreferenceNosé, M., R. W. McEntire, and S. P. Christon ( 2003 ), Change of the plasma sheet ion composition during magnetic storm development observed by the Geotail spacecraft, J. Geophys. Res., 108, 1201, doi: 10.1029/2002JA009660.en_US
dc.identifier.citedreferenceOlsen, N., et al. ( 2000 ), Ørsted initial field model, Geophys. Res. Lett., 27 ( 22 ), 3607 – 3610, doi: 10.1029/2000GL011930.en_US
dc.identifier.citedreferenceOuellette, J. E., O. J. Brambles, J. G. Lyon, W. Lotko, and B. N. Rogers ( 2013 ), Properties of outflow‐driven sawtooth substorms, J. Geophys. Res. Space Physics, 118 ( 6 ), 3223 – 3232, doi: 10.1002/jgra.50309.en_US
dc.identifier.citedreferencePembroke, A., F. Toffoletto, S. Sazykin, M. Wiltberger, J. Lyon, V. Merkin, and P. Schmitt ( 2012 ), Initial results from a dynamic coupled magnetosphere‐ionosphere‐ring current model, J. Geophys. Res., 117, A02211, doi: 10.1029/2011JA016979.en_US
dc.identifier.citedreferencePeterson, W., L. Andersson, B. Callahan, S. Elkington, R. Winglee, J. Scudder, and H. Collin ( 2009 ), Geomagnetic activity dependence of O + in transit from the ionosphere, J. Atmos. Sol. Terr. Phys., 71 ( 16 ), 1623 – 1629, doi: 10.1016/j.jastp.2008.11.003.en_US
dc.identifier.citedreferencePowell, K., P. Roe, T. Linde, T. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309.en_US
dc.identifier.citedreferencePulkkinen, A., et al. ( 2013 ), Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations, Space Weather, 11 ( 6 ), 369 – 385, doi: 10.1002/swe.20056.en_US
dc.identifier.citedreferenceRastätter, L., M. M. Kuznetsova, A. Vapirev, A. Ridley, M. Wiltberger, A. Pulkkinen, M. Hesse, and H. J. Singer ( 2011 ), Geospace environment modeling 2008–2009 challenge: Geosynchronous magnetic field, Space Weather, 9, S04005, doi: 10.1029/2010SW000617.en_US
dc.identifier.citedreferenceRastätter, L., et al. ( 2013 ), Geospace environment modeling 2008–2009 challenge: Dst index, Space Weather, 11, 187 – 205, doi: 10.1002/swe.20036.en_US
dc.identifier.citedreferenceRidley, A., T. Gombosi, and D. L. De Zeeuw ( 2004 ), Ionospheric control of the magnetospheric configuration: Conductance, Ann. Geophys., 22, 567 – 584.en_US
dc.identifier.citedreferenceRidley, A. J., K. C. Hansen, G. Tóth, D. L. De Zueew, T. I. Gombosi, and K. G. Powell ( 2002 ), University of Michigan MHD results of the GGCM metrics challenge, J. Geophys. Res., 107 ( A10 ), 1290, doi: 10.1029/2001JA000253.en_US
dc.identifier.citedreferenceRidley, J. A., and M. W. Liemohn ( 2002 ), A model‐derived storm time asymmetric ring current driven electric field description, J. Geophys. Res., 107 ( A8 ), 1151, doi: 10.1029/2001JA000051.en_US
dc.identifier.citedreferenceSánchez, E. R., and A. StrØmme ( 2014 ), Incoherent scatter radar‐FAST satellite common volume observations of upflow‐to‐outflow conversion, J. Geophys. Res. Space Physics, 119, 2649 – 2674, doi: 10.1002/2013JA019096.en_US
dc.identifier.citedreferenceSchunk, R., and A. Nagy ( 2000 ), Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceSckopke, N. ( 1966 ), A general relation between the energy of trapped particles and the disturbance field over the Earth, J. Geophys. Res., 71, 3125 – 3130.en_US
dc.identifier.citedreferenceSharp, R. D., W. Lennartsson, and R. J. Strangeway ( 1985 ), The ionospheric contribution to the plasma environment in near‐Earth space, Radio Sci., 20, 456 – 462, doi: 10.1029/RS020i003p00456.en_US
dc.identifier.citedreferenceSiscoe, G. L., G. M. Erickson, B. U. O. Sonnerup, N. C. Maynard, K. D. Siebert, D. R. Weimer, and W. W. White ( 2001 ), Relation between cusp and mantle in MHD simulation, J. Geophys. Res., 106 ( A6 ), 10,743 – 10,749, doi: 10.1029/2000JA000385.en_US
dc.identifier.citedreferenceSøraas, F., K. M. Laundal, and M. Usanova ( 2013 ), Coincident particle and optical observations of nightside subauroral proton precipitation, J. Geophys. Res. Space Physics, 118, 1112 – 1122, doi: 10.1002/jgra.50172.en_US
dc.identifier.citedreferenceThomsen, M. F., J. E. Borovsky, R. M. Skoug, and C. W. Smith ( 2003 ), Delivery of cold, dense plasma sheet material into the near‐Earth region, J. Geophys. Res., 108 ( A4 ), 1151, doi: 10.1029/2002JA009544.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.