Show simple item record

Identification of a neurovascular signaling pathway regulating seizures in mice

dc.contributor.authorFredriksson, Lindaen_US
dc.contributor.authorStevenson, Tamara K.en_US
dc.contributor.authorSu, Enming J.en_US
dc.contributor.authorRagsdale, Margareten_US
dc.contributor.authorMoore, Shannonen_US
dc.contributor.authorCraciun, Stefanen_US
dc.contributor.authorSchielke, Gerald P.en_US
dc.contributor.authorMurphy, Geoffrey G.en_US
dc.contributor.authorLawrence, Daniel A.en_US
dc.date.accessioned2015-08-05T16:47:46Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationFredriksson, Linda; Stevenson, Tamara K.; Su, Enming J.; Ragsdale, Margaret; Moore, Shannon; Craciun, Stefan; Schielke, Gerald P.; Murphy, Geoffrey G.; Lawrence, Daniel A. (2015). "Identification of a neurovascular signaling pathway regulating seizures in mice." Annals of Clinical and Translational Neurology 2(7): 722-738.en_US
dc.identifier.issn2328-9503en_US
dc.identifier.issn2328-9503en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112290
dc.description.abstractObjectiveA growing body of evidence suggests that increased blood–brain barrier (BBB) permeability can contribute to the development of seizures. The protease tissue plasminogen activator (tPA) has been shown to promote BBB permeability and susceptibility to seizures. In this study, we examined the pathway regulated by tPA in seizures.MethodsAn experimental model of kainate‐induced seizures was used in genetically modified mice, including mice deficient in tPA (tPA−/−), its inhibitor neuroserpin (Nsp−/−), or both (Nsp:tPA−/−), and in mice conditionally deficient in the platelet‐derived growth factor receptor alpha (PDGFRα).ResultsCompared to wild‐type (WT) mice, Nsp−/− mice have significantly reduced latency to seizure onset and generalization; whereas tPA−/− mice have the opposite phenotype, as do Nsp:tPA−/− mice. Furthermore, interventions that maintain BBB integrity delay seizure propagation, whereas osmotic disruption of the BBB in seizure‐resistant tPA−/− mice dramatically reduces the time to seizure onset and accelerates seizure progression. The phenotypic differences in seizure progression between WT, tPA−/−, and Nsp−/− mice are also observed in electroencephalogram recordings in vivo, but absent in ex vivo electrophysiological recordings where regulation of the BBB is no longer necessary to maintain the extracellular environment. Finally, we demonstrate that these effects on seizure progression are mediated through signaling by PDGFRα on perivascular astrocytes.InterpretationTogether, these data identify a specific molecular pathway involving tPA‐mediated PDGFRα signaling in perivascular astrocytes that regulates seizure progression through control of the BBB. Inhibition of PDGFRα signaling and maintenance of BBB integrity might therefore offer a novel clinical approach for managing seizures.en_US
dc.publisherKGaA, Wiley‐VCH Verlag GmbH & Co.en_US
dc.titleIdentification of a neurovascular signaling pathway regulating seizures in miceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurology and Neurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112290/1/acn3209.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112290/2/acn3209-sup-0001-TableS1.pdf
dc.identifier.doi10.1002/acn3.209en_US
dc.identifier.sourceAnnals of Clinical and Translational Neurologyen_US
dc.identifier.citedreferenceMyint PK, Staufenberg EF, Sabanathan K. Post‐stroke seizure and post‐stroke epilepsy. Postgrad Med J 2006; 82: 568 – 572.en_US
dc.identifier.citedreferenceAlberti A. Seizures. Front Neurol Neurosci 2012; 30: 30 – 33.en_US
dc.identifier.citedreferenceMerali Z, Leung J, Mikulis D, et al. Longitudinal assessment of imatinib's effect on the blood‐brain barrier after ischemia/reperfusion injury with permeability MRI. Transl Stroke Res 2015; 6: 39 – 49.en_US
dc.identifier.citedreferenceMa Q, Huang B, Khatibi N, et al. PDGFR‐alpha inhibition preserves blood‐brain barrier after intracerebral hemorrhage. Ann Neurol 2011; 70: 920 – 931.en_US
dc.identifier.citedreferenceLeybaert L, Cabooter L, Braet K. Calcium signal communication between glial and vascular brain cells. Acta Neurol Belg 2004; 104: 51 – 56.en_US
dc.identifier.citedreferencePark L, Gallo EF, Anrather J, et al. Key role of tissue plasminogen activator in neurovascular coupling. Proc Natl Acad Sci USA 2008; 105: 1073 – 1078.en_US
dc.identifier.citedreferenceAn J, Haile WB, Wu F, et al. Tissue‐type plasminogen activator mediates neuroglial coupling in the central nervous system. Neuroscience 2014; 257: 41 – 48.en_US
dc.identifier.citedreferenceWu F, Wu J, Nicholson AD, et al. Tissue‐type plasminogen activator regulates the neuronal uptake of glucose in the ischemic brain. J Neurosci 2012; 32: 9848 – 9858.en_US
dc.identifier.citedreferenceWu F, Nicholson AD, Haile WB, et al. Tissue‐type plasminogen activator mediates neuronal detection and adaptation to metabolic stress. J Cereb Blood Flow Metab 2013; 33: 1761 – 1769.en_US
dc.identifier.citedreferenceTrevelyan AJ, Sussillo D, Watson BO, Yuste R. Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex. J Neurosci 2006; 26: 12447 – 12455.en_US
dc.identifier.citedreferenceTrevelyan AJ, Sussillo D, Yuste R. Feedforward inhibition contributes to the control of epileptiform propagation speed. J Neurosci 2007; 27: 3383 – 3387.en_US
dc.identifier.citedreferenceYepes M, Roussel BD, Ali C, Vivien D. Tissue‐type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci 2009; 32: 48 – 55.en_US
dc.identifier.citedreferenceLi J, Yu L, Gu X, et al. Tissue plasminogen activator regulates Purkinje neuron development and survival. Proc Natl Acad Sci USA 2013; 110: E2410 – E2419.en_US
dc.identifier.citedreferenceSeeds NW, Basham ME, Ferguson JE. Absence of tissue plasminogen activator gene or activity impairs mouse cerebellar motor learning. J Neurosci 2003; 23: 7368 – 7375.en_US
dc.identifier.citedreferenceMinor K, Phillips J, Seeds NW. Tissue plasminogen activator promotes axonal outgrowth on CNS myelin after conditioned injury. J Neurochem 2009; 109: 706 – 715.en_US
dc.identifier.citedreferenceSeeds NW, Siconolfi LB, Haffke SP. Neuronal extracellular proteases facilitate cell migration, axonal growth, and pathfinding. Cell Tissue Res 1997; 290: 367 – 370.en_US
dc.identifier.citedreferenceTsirka SE, Rogove AD, Strickland S. Neuronal cell death and tPA. Nature 1996; 384: 123 – 124.en_US
dc.identifier.citedreferenceTsirka SE, Rogove AD, Bugge TH, et al. An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J Neurosci 1997; 17: 543 – 552.en_US
dc.identifier.citedreferenceRogove AD, Tsirka SE. Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr Biol 1998; 8: 19 – 25.en_US
dc.identifier.citedreferenceParcq J, Bertrand T, Montagne A, et al. Unveiling an exceptional zymogen: the single‐chain form of tPA is a selective activator of NMDA receptor‐dependent signaling and neurotoxicity. Cell Death Differ 2012; 19: 1983 – 1991.en_US
dc.identifier.citedreferenceMiranda E, Lomas DA. Neuroserpin: a serpin to think about. Cell Mol Life Sci 2006; 63: 709 – 722.en_US
dc.identifier.citedreferenceZhang C, Wang X, Wang Y, et al. Risk factors for post‐stroke seizures: a systematic review and meta‐analysis. Epilepsy Res 2014; 108: 1806 – 1816.en_US
dc.identifier.citedreferenceLemarchant S, Docagne F, Emery E, et al. tPA in the injured central nervous system: different scenarios starring the same actor? Neuropharmacology 2012; 62: 749 – 756.en_US
dc.identifier.citedreferenceSu EJ, Fredriksson L, Schielke GP, et al. Tissue plasminogen activator‐mediated PDGF signaling and neurovascular coupling in stroke. J Thromb Haemost 2009; 7 ( suppl 1 ): 155 – 158.en_US
dc.identifier.citedreferenceSchielke GP, Lawrence DA. Plasminogen activators in ischemic stroke. In: Behrendt N, ed. Matrix proteases in health and disease. Weinheim, Germany: KGaA, Wiley‐VCH Verlag GmbH & Co., 2012;ch6. p. 127 – 156.en_US
dc.identifier.citedreferenceHastings GA, Coleman TA, Haudenschild CC, et al. Neuroserpin, a brain‐associated inhibitor of tissue plasminogen activator is localized primarily in neurons. Implications for the regulation of motor learning and neuronal survival. J Biol Chem 1997; 272: 33062 – 33067.en_US
dc.identifier.citedreferenceOsterwalder T, Cinelli P, Baici A, et al. The axonally secreted serine proteinase inhibitor, neuroserpin, inhibits plasminogen activators and plasmin but not thrombin. J Biol Chem 1998; 273: 2312 – 2321.en_US
dc.identifier.citedreferenceOsterwalder T, Contartese J, Stoeckli ET, et al. Neuroserpin, an axonally secreted serine protease inhibitor. EMBO J 1996; 15: 2944 – 2953.en_US
dc.identifier.citedreferenceSchrimpf SP, Bleiker AJ, Brecevic L, et al. Human neuroserpin (PI12): cDNA cloning and chromosomal localization to 3q26. Genomics 1997; 40: 55 – 62.en_US
dc.identifier.citedreferenceTakao M, Benson MD, Murrell JR, et al. Neuroserpin mutation S52R causes neuroserpin accumulation in neurons and is associated with progressive myoclonus epilepsy. J Neuropathol Exp Neurol 2000; 59: 1070 – 1086.en_US
dc.identifier.citedreferenceCoutelier M, Andries S, Ghariani S, et al. Neuroserpin mutation causes electrical status epilepticus of slow‐wave sleep. Neurology 2008; 71: 64 – 66.en_US
dc.identifier.citedreferenceDavis RL, Shrimpton AE, Holohan PD, et al. Familial dementia caused by polymerization of mutant neuroserpin. Nature 1999; 401: 376 – 379.en_US
dc.identifier.citedreferenceDavis RL, Shrimpton AE, Carrell RW, et al. Association between conformational mutations in neuroserpin and onset and severity of dementia. Lancet 2002; 359: 2242 – 2247.en_US
dc.identifier.citedreferenceBelorgey D, Sharp LK, Crowther DC, et al. Neuroserpin Portland (Ser52Arg) is trapped as an inactive intermediate that rapidly forms polymers: implications for the epilepsy seen in the dementia FENIB. Eur J Biochem 2004; 271: 3360 – 3367.en_US
dc.identifier.citedreferenceQian Z, Gilbert ME, Colicos MA, et al. Tissue‐plasminogen activator is induced as an immediate‐early gene during seizure, kindling and long‐term potentiation. Nature 1993; 361: 453 – 457.en_US
dc.identifier.citedreferenceTsirka SE, Gualandris A, Amaral DG, Strickland S. Excitotoxin‐induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 1995; 377: 340 – 344.en_US
dc.identifier.citedreferenceYepes M, Sandkvist M, Coleman TA, et al. Regulation of seizure spreading by neuroserpin and tissue‐type plasminogen activator is plasminogen‐independent. J Clin Invest 2002; 109: 1571 – 1578.en_US
dc.identifier.citedreferenceTan ML, Ng A, Pandher PS, et al. Tissue plasminogen activator does not alter development of acquired epilepsy. Epilepsia 2012; 53: 1998 – 2004.en_US
dc.identifier.citedreferenceIshigami S, Sandkvist M, Tsui F, et al. Identification of a novel targeting sequence for regulated secretion in the serine protease inhibitor neuroserpin. Biochem J 2007; 402: 25 – 34.en_US
dc.identifier.citedreferenceGualandris A, Jones TE, Strickland S, Tsirka SE. Membrane depolarization induces calcium‐dependent secretion of tissue plasminogen activator. J Neurosci 1996; 16: 2220 – 2225.en_US
dc.identifier.citedreferenceHassanien SH, Awadalla MM, Saad AA, Aziz NAA. Tissue plasminogen activator in children with idiopathic and intractable epilepsies. J Pediatr Neurol 2010; 8: 193 – 197.en_US
dc.identifier.citedreferencePawlak R, Melchor JP, Matys T, et al. Ethanol‐withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B‐containing NMDA receptors. Proc Natl Acad Sci USA 2005; 102: 443 – 448.en_US
dc.identifier.citedreferenceNicole O, Docagne F, Ali C, et al. The proteolytic activity of tissue‐plasminogen activator enhances NMDA receptor‐mediated signaling. Nat Med 2001; 7: 59 – 64.en_US
dc.identifier.citedreferenceYepes M, Sandkvist M, Moore EG, et al. Tissue‐type plasminogen activator induces opening of the blood‐brain barrier via the LDL receptor‐related protein. J Clin Invest 2003; 112: 1533 – 1540.en_US
dc.identifier.citedreferenceYepes M, Lawrence DA. New functions for an old enzyme: nonhemostatic roles for tissue‐type plasminogen activator in the central nervous system. Exp Biol Med 2004; 229: 1097 – 1104.en_US
dc.identifier.citedreferenceFredriksson L, Li H, Fieber C, et al. Tissue plasminogen activator is a potent activator of PDGF‐CC. EMBO J 2004; 23: 3793 – 3802.en_US
dc.identifier.citedreferenceSu EJ, Fredriksson L, Geyer M, et al. Activation of PDGF‐CC by tissue plasminogen activator impairs blood‐brain barrier integrity during ischemic stroke. Nat Med 2008; 14: 731 – 737.en_US
dc.identifier.citedreferenceStanimirovic DB, Friedman A. Pathophysiology of the neurovascular unit: disease cause or consequence? J Cereb Blood Flow Metab 2012; 32: 1207 – 1221.en_US
dc.identifier.citedreferenceMarchi N, Tierney W, Alexopoulos AV, et al. The etiological role of blood‐brain barrier dysfunction in seizure disorders. Cardiovasc Psychiatry Neurol 2011; vol. 2011, Article ID 482415, 9 pages. doi: 10.1155/2011/482415en_US
dc.identifier.citedreferenceStafstrom CE. Mechanisms of action of antiepileptic drugs: the search for synergy. Curr Opin Neurol 2010; 23: 157 – 163.en_US
dc.identifier.citedreferenceSchuele SU, Luders HO. Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol 2008; 7: 514 – 524.en_US
dc.identifier.citedreferenceJanigro D. Does leakage of the blood‐brain barrier mediate epileptogenesis?. Epilepsy Curr 2007; 7: 105 – 107.en_US
dc.identifier.citedreferenceMarchi N, Angelov L, Masaryk T, et al. Seizure‐promoting effect of blood‐brain barrier disruption. Epilepsia 2007; 48: 732 – 742.en_US
dc.identifier.citedreferenceFriedman A, Kaufer D, Heinemann U. Blood‐brain barrier breakdown‐inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res 2009; 85: 142 – 149.en_US
dc.identifier.citedreferenceWalther H, Lambert JDC, Jones RSG, et al. Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neurosci Lett 1986; 69: 156 – 161.en_US
dc.identifier.citedreferenceMoore SJ, Throesch BT, Murphy GG. Of mice and intrinsic excitability: genetic background affects the size of the postburst afterhyperpolarization in CA1 pyramidal neurons. J Neurophysiol 2011; 106: 1570 – 1580.en_US
dc.identifier.citedreferenceSinger BH, Gamelli AE, Fuller CL, et al. Compensatory network changes in the dentate gyrus restore long‐term potentiation following ablation of neurogenesis in young‐adult mice. Proc Natl Acad Sci USA 2011; 108: 5437 – 5442.en_US
dc.identifier.citedreferenceTeesalu T, Kulla A, Simisker A, et al. Tissue plasminogen activator and neuroserpin are widely expressed in the human central nervous system. Thromb Haemost 2004; 92: 358 – 368.en_US
dc.identifier.citedreferenceYamamoto M, Sawaya R, Mohanam S, et al. Expression and cellular localization of messenger RNA for plasminogen activator inhibitor type 1 in human astrocytomas in vivo. Cancer Res 1994; 54: 3329 – 3332.en_US
dc.identifier.citedreferenceMichalak Z, Sano T, Engel T, et al. Spatio‐temporally restricted blood‐brain barrier disruption after intra‐amygdala kainic acid‐induced status epilepticus in mice. Epilepsy Res 2013; 103: 167 – 179.en_US
dc.identifier.citedreferenceHuber D, Cramer EM, Kaufmann JE, et al. Tissue‐type plasminogen activator (t‐PA) is stored in Weibel‐Palade bodies in human endothelial cells both in vitro and in vivo. Blood 2002; 99: 3637 – 3645.en_US
dc.identifier.citedreferenceSalles FJ, Strickland S. Localization and regulation of the tissue plasminogen activator‐plasmin system in the hippocampus. J Neurosci 2002; 22: 2125 – 2134.en_US
dc.identifier.citedreferenceCauli B, Tong XK, Rancillac A, et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 2004; 24: 8940 – 8949.en_US
dc.identifier.citedreferenceHamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol 2006; 100: 1059 – 1064.en_US
dc.identifier.citedreferenceIadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 2004; 5: 347 – 360.en_US
dc.identifier.citedreferenceTallquist MD, Soriano P. Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells. Development 2003; 130: 507 – 518.en_US
dc.identifier.citedreferenceZhuo L, Theis M, Alvarez‐Maya I, et al. hGFAP‐cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 2001; 31: 85 – 94.en_US
dc.identifier.citedreferenceBrown RC, Egleton RD, Davis TP. Mannitol opening of the blood‐brain barrier: regional variation in the permeability of sucrose, but not 86Rb+ or albumin. Brain Res 2004; 1014: 221 – 227.en_US
dc.identifier.citedreferenceWakai A, McCabe A, Roberts I, Schierhout G. Mannitol for acute traumatic brain injury. Cochrane Database Syst Rev 2013; 8: CD001049.en_US
dc.identifier.citedreferenceDavis RL, Holohan PD, Shrimpton AE, et al. Familial encephalopathy with neuroserpin inclusion bodies. Am J Pathol 1999; 155: 1901 – 1913.en_US
dc.identifier.citedreferenceGourfinkel‐An I, Duyckaerts C, Camuzat A, et al. Clinical and neuropathologic study of a French family with a mutation in the neuroserpin gene. Neurology 2007; 69: 79 – 83.en_US
dc.identifier.citedreferenceHagen MC, Murrell JR, Delisle MB, et al. Encephalopathy with neuroserpin inclusion bodies presenting as progressive myoclonus epilepsy and associated with a novel mutation in the Proteinase Inhibitor 12 gene. Brain Pathol 2011; 21: 575 – 582.en_US
dc.identifier.citedreferenceTian GF, Azmi H, Takano T, et al. An astrocytic basis of epilepsy. Nat Med 2005; 11: 973 – 981.en_US
dc.identifier.citedreferenceIvens S, Kaufer D, Flores LP, et al. TGF‐beta receptor‐mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 2007; 130: 535 – 547.en_US
dc.identifier.citedreferenceShlosberg D, Benifla M, Kaufer D, Friedman A. Blood‐brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 2010; 6: 393 – 403.en_US
dc.identifier.citedreferenceRiggio S. Traumatic brain injury and its neurobehavioral sequelae. Psychiatr Clin North Am 2010; 33: 807 – 819.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.