Show simple item record

Redox‐controlled preservation of organic matter during “OAE 3” within the Western Interior Seaway

dc.contributor.authorTessin, Allysonen_US
dc.contributor.authorHendy, Ingriden_US
dc.contributor.authorSheldon, Nathan D.en_US
dc.contributor.authorSageman, Bradleyen_US
dc.date.accessioned2015-08-05T16:47:49Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-06en_US
dc.identifier.citationTessin, Allyson; Hendy, Ingrid; Sheldon, Nathan; Sageman, Bradley (2015). "Redox‐controlled preservation of organic matter during “OAE 3” within the Western Interior Seaway." Paleoceanography 30(6): 702-717.en_US
dc.identifier.issn0883-8305en_US
dc.identifier.issn1944-9186en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112294
dc.description.abstractDuring the Cretaceous, widespread black shale deposition occurred during a series of Oceanic Anoxic Events (OAEs). Multiple processes are known to control the deposition of marine black shales, including changes in primary productivity, organic matter preservation, and dilution. OAEs offer an opportunity to evaluate the relative roles of these forcing factors. The youngest of these events—the Coniacian to Santonian OAE 3—resulted in a prolonged organic carbon burial event in shallow and restricted marine environments including the Western Interior Seaway. New high‐resolution isotope, organic, and trace metal records from the latest Turonian to early Santonian Niobrara Formation are used to characterize the amount and composition of organic matter preserved, as well as the geochemical conditions under which it accumulated. Redox sensitive metals (Mo, Mn, and Re) indicate a gradual drawdown of oxygen leading into the abrupt onset of organic carbon‐rich (up to 8%) deposition. High Hydrogen Indices (HI) and organic carbon to total nitrogen ratios (C:N) demonstrate that the elemental composition of preserved marine organic matter is distinct under different redox conditions. Local changes in δ13C indicate that redox‐controlled early diagenesis can also significantly alter δ13Corg records. These results demonstrate that the development of anoxia is of primary importance in triggering the prolonged carbon burial in the Niobrara Formation. Sea level reconstructions, δ18O results, and Mo/total organic carbon ratios suggest that stratification and enhanced bottom water restriction caused the drawdown of bottom water oxygen. Increased nutrients from benthic regeneration and/or continental runoff may have sustained primary productivity.Key PointsBottom water redox changes triggered carbon burial within the WIS during OAE 3Anoxia developed due to O2 drawdown in a stratified water columnRedox‐controlled changes in OM preservation altered primary δ13Corg signalsen_US
dc.publisherSEPMen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCretaceous oceanic anoxic eventsen_US
dc.subject.othercarbon burialen_US
dc.subject.otheranoxiaen_US
dc.subject.otherproductivityen_US
dc.titleRedox‐controlled preservation of organic matter during “OAE 3” within the Western Interior Seawayen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112294/1/palo20210.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112294/2/palo20210-sup-0001-SupportingInfo.pdf
dc.identifier.doi10.1002/2014PA002729en_US
dc.identifier.sourcePaleoceanographyen_US
dc.identifier.citedreferenceRoyer, D. L., R. A. Berner, and D. J. Beerling ( 2001 ), Phanerozoic atmospheric CO 2 change: Evaluating geochemical and paleobiological approaches, Earth Sci. Rev., 54 ( 4 ), 349 – 392.en_US
dc.identifier.citedreferenceSchlanger, S. O., M. A. Arthur, H. C. Jenkyns, and P. A. Scholle ( 1987 ), The Cenomanian‐Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon‐rich beds and the marine δ 13 C excursion, Geol. Soc. London, Spec. Publ., 26 ( 1 ), 371 – 399.en_US
dc.identifier.citedreferenceScott, C., and T. W. Lyons ( 2012 ), Contrasting molybdenum cycling and isotopic properties in euxinic versus non‐euxinic sediments and sedimentary rocks: Refining the paleoproxies, Chem. Geol., 324, 19 – 27.en_US
dc.identifier.citedreferenceScott, G. R., and W. A. Cobban ( 1964 ), Stratigraphy of the Niobrara Formation at Pueblo, Colorado, U.S. Geol. Surv. Prof. Pap., 454‐L, L1 – L30.en_US
dc.identifier.citedreferenceSnow, L. J., R. A. Duncan, and T. J. Bralower ( 2005 ), Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2, Paleoceanography, 20, PA3005, doi: 10.1029/2004PA001093.en_US
dc.identifier.citedreferenceTaylor, S. R., and M. S. McLennan ( 1985 ), The Continental Crust: Its Composition and Evolution, pp. 312, Blackwell Scientific Publication, Carlton.en_US
dc.identifier.citedreferenceTourtelot, H. A., and R. O. Rye ( 1969 ), Distribution of oxygen and carbon isotopes in fossils of Late Cretaceous age western interior region of North America, Geol. Soc. Am. Bull., 80 ( 10 ), 1903 – 1922.en_US
dc.identifier.citedreferenceTsandev, I., and C. P. Slomp ( 2009 ), Modeling phosphorus cycling and carbon burial during Cretaceous Oceanic Anoxic Events, Earth Planet. Sci. Lett., 286 ( 1 ), 71 – 79.en_US
dc.identifier.citedreferenceTsikos, H., et al. ( 2004 ), Carbon‐isotope stratigraphy recorded by the Cenomanian‐Turonian oceanic anoxic event: Correlation and implications based on three key‐localities, J. Geol. Soc., 161, 711 – 720.en_US
dc.identifier.citedreferenceTurgeon, S. C., and R. A. Creaser ( 2008 ), Cretaceous Anoxic Event 2 triggered by a massive magmatic episode, Nature, 454, 323 – 326.en_US
dc.identifier.citedreferenceTyson, R. V., and T. H. Pearson ( 1991 ), Modern and ancient continental shelf anoxia: An overview, in Modern and Ancient Continental Shelf Anoxia, edited by R. V. Tyson and T. H. Pearson, pp. 1 – 24, Geological Society, London.en_US
dc.identifier.citedreferenceVan Mooy, B. A. S., R. G. Keil, and A. H. Devol ( 2002 ), Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification, Geochim. Cosmochim. Acta, 66, 457 – 465.en_US
dc.identifier.citedreferenceWagner, T., J. S. S. Damste, P. Hofmann, and B. Beckmann ( 2004 ), Euxinia and primary production in Late Cretaceous eastern equatorial Atlantic surface waters fostered orbitally driven formation of marine black shales, Paleoceanography, 19, PA3009, doi: 10.1029/2003PA000898.en_US
dc.identifier.citedreferenceWagreich, M. ( 2012 ), " OAE 3" ‐regional Atlantic organic carbon burial during the Coniacian‐Santonian, Clim. Past, 8, 1447 – 1455.en_US
dc.identifier.citedreferenceWalaszczyk, I., and W. A. Cobban ( 2000 ), Inoceramid faunas and biostratigraphy of the Upper Turonian‐Lower Coniacian of the Western Interior of the United States, Spec. Pap. Palaeontol., 64, 1 – 118.en_US
dc.identifier.citedreferenceWalaszczyk, I., and W. A. Cobban ( 2006 ), Palaeontology and biostratigraphy of the Middle‐Upper Coniacian and Santonian inoceramids of the US Western Interior, Acta Geol. Pol., 56 ( 3 ), 241 – 348.en_US
dc.identifier.citedreferenceWalaszczyk, I., and W. A. Cobban ( 2007 ), Inoceramid fauna and biostratigraphy of the upper Middle Coniacian‐lower Middle Santonian of the Pueblo Section (SE Colorado, US Western Interior), Cretaceous Res., 28 ( 1 ), 132 – 142.en_US
dc.identifier.citedreferenceWalaszczyk, I., J. A. Shank, A. G. Plint, and W. A. Cobban ( 2014 ), Interregional correlation of disconformities in Upper Cretaceous strata, Western Interior Seaway: Biostratigraphic and sequence‐stratigraphic evidence for eustatic change, Geol. Soc. Am. Bull., 126 ( 3–4 ), 307 – 316.en_US
dc.identifier.citedreferenceWatkins, D. K. ( 1989 ), Nannoplankton productivity fluctuations and rhythmically‐bedded pelagic carbonates of the Greenhorn Limestone (Upper Cretaceous), Palaeogeogr. Palaeoclimatol. Palaeoecol., 74, 75 – 86.en_US
dc.identifier.citedreferenceWendler, I. ( 2013 ), A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late Cretaceous global correlation, Earth Sci. Rev., 126, 116 – 146.en_US
dc.identifier.citedreferenceWhite, T., and M. A. Arthur ( 2006 ), Organic carbon production and preservation in response to sea‐level changes in the Turonian Carlile Formation, US Western Interior Basin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 235 ( 1 ), 223 – 244.en_US
dc.identifier.citedreferenceWright, E. K. ( 1987 ), Stratification and paleocirculation of the Late Cretaceous Western Interior Seaway of North America, Geol. Soc. Am. Bull., 99 ( 4 ), 480 – 490.en_US
dc.identifier.citedreferenceZonneveld, K. A. F., et al. ( 2010 ), Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record, Biogeosciences, 7, 483 – 511.en_US
dc.identifier.citedreferenceAdams, D. D., M. T. Hurtgen, and B. B. Sageman ( 2010 ), Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2, Nat. Geosci., 3 ( 3 ), 201 – 204.en_US
dc.identifier.citedreferenceAlgeo, T. J., and T. W. Lyons ( 2006 ), Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions, Paleoceanography, 21, PA1016, doi: 10.1029/2004PA001112.en_US
dc.identifier.citedreferenceAller, R. C. ( 1978 ), Experimental studies of changes produced by deposit feeders on pore water, sediment and overlying water chemistry, Am. J. Sci., 278, 1185 – 1234.en_US
dc.identifier.citedreferenceAller, R. C. ( 1994 ), Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillation, Chem. Geol., 3–4, 331 – 345.en_US
dc.identifier.citedreferenceArndt, S., B. B. Jørgensen, D. E. LaRowe, J. J. Middelburg, R. D. Pancost, and P. Regnier ( 2013 ), Quantifying the degradation of organic matter in marine sediments: A review and synthesis, Earth Sci. Rev., 123, 53 – 86.en_US
dc.identifier.citedreferenceArthur, M. A., and B. B. Sageman ( 1994 ), Marine black shales: Depositional mechanisms and environments of ancient deposits, Annu. Rev. Earth Planet. Sci., 22, 499 – 551.en_US
dc.identifier.citedreferenceArthur, M. A., and B. B. Sageman ( 2005 ), Sea level control on source rock development: Perspectives from the Holocene Black Sea, the mid‐Cretaceous Western Interior Basin of North America, and the Late Devonian Appalachian Basin, in Deposition of Organic‐Carbon‐Rich Sediments: Models, Mechanisms, and Consequences, edited by N. B. Harris, pp. 35 – 59, SEPM, Tulsa, Okla.en_US
dc.identifier.citedreferenceArthur, M. A., S. O. Schlanger, and H. C. Jenkyns ( 1987 ), The Cenomanian‐Turonian Oceanic Anoxic Event, II. Paleoceanographic controls on organic matter production and preservation, in Marine Petroleum Source Rocks, Geological Society of London Special Paper, edited by J. A. A. F. Brooks, pp. 401 – 420, Blackwell, Oxford, U. K.en_US
dc.identifier.citedreferenceBarron, E. J., M. A. Arthur, and E. G. Kauffman ( 1985 ), Cretaceous rhythmic bedding sequences: A plausible link between orbital variations and climate, Earth Planet. Sci. Lett., 72 ( 4 ), 327 – 340.en_US
dc.identifier.citedreferenceBeckmann, B., T. Wagner, and P. Hofmann ( 2005 ), Linking Coniacian‐Santonian (OAE 3) black shale deposition to African climate variability: A reference section from the eastern tropical Atlantic at orbital time scales (ODP 959, off Ivory Coast and Ghana), in Deposition of Organic‐Carbon‐Rich Sediments: Models, Mechanisms, and Consequences, edited by N. B. Harris, pp. 125 – 143, SEPM, Tulsa, Okla.en_US
dc.identifier.citedreferenceBenner, R., A. E. Maccubbin, and R. E. Hodson ( 1984 ), Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora, Appl. Environ. Microbiol., 47, 998 – 1004.en_US
dc.identifier.citedreferenceBjerrum, C. J., J. Bendtsem, and J. J. F. Legarth ( 2006 ), Modeling organic carbon burial during sea level rise with reference to the Cretaceous, Geochem. Geophys. Geosyst., 7, Q05008, doi: 10.1029/2005GC001032.en_US
dc.identifier.citedreferenceBohacs, K. M., G. J. Grabowski Jr., A. R. Carroll, P. J. Mankiewicz, K. J. Miskell‐Gerhardt, J. R. Schwalbach, M. B. Wegner, and J. A. Simo ( 2005 ), Production, destruction, and dilution—The many paths to source‐rock development, in The Deposition of Organic‐Carbon‐Rich Sediments: Models, Mechanisms, and Consequences, SEPM Spec. Publ., vol. 82, edited by N. Harris, pp. 61 – 101, SEPM, Tulsa, Okla.en_US
dc.identifier.citedreferenceBrumsack, H. J. ( 2006 ), The trace metal content of recent organic carbon‐rich sediments: Implications for Cretaceous black shale formation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 232 ( 2–4 ), 344 – 361.en_US
dc.identifier.citedreferenceBurns, C. E., and T. J. Bralower ( 1998 ), Upper Cretaceous nannofossil assemblages across the Western Interior Seaway: Implications for the origins of lithologic cycles in the Greenhorn and Niobrara Formations, in Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, edited by W. E. Dean and M. A. Arthur, pp. 227 – 255, SEPM Concepts in Sedimentology and Paleontology, Tulsa, Okla.en_US
dc.identifier.citedreferenceCalvert, S. E., and T. F. Pedersen ( 1993 ), Geochemistry of recent oxic and anoxic marine sediments—Implications for the geologic record, Mar. Geol., 113 ( 1–2 ), 67 – 88.en_US
dc.identifier.citedreferenceCanfield, D. E. ( 1994 ), Factors influencing organic carbon preservation in marine sediments, Chem. Geol., 114, 315 – 329.en_US
dc.identifier.citedreferenceCoulson, A. B., M. J. Kohn, and R. E. Barrick ( 2011 ), Isotopic evaluation of ocean circulation in the Late Cretaceous North American seaway, Nat. Geosci., 4 ( 12 ), 852 – 855.en_US
dc.identifier.citedreferenceCrusius, J., S. Calvert, T. Pedersen, and D. Sage ( 1996 ), Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition, Earth Planet. Sci. Lett., 145 ( 1–4 ), 65 – 78.en_US
dc.identifier.citedreferenceDa Gama, R. O. B. P., B. Lutz, P. Desjardins, M. Thompson, I. Prince, and I. Espejo ( 2014 ), Integrated paleoenvironmental analysis of the Niobrara Formation: Cretaceous Western Interior Seaway, northern Colorado, Palaeogeogr. Palaeoclimatol. Palaeoecol., 413, 66 – 80.en_US
dc.identifier.citedreferenceDe Romero, L. M., I. M. Truskowski, T. J. Bralower, J. A. Bergen, O. Odreman, J. C. Zachos, and F. A. Galea‐Alvarez ( 2003 ), An integrated calcareous microfossil biostratigraphic and carbon‐isotope stratigraphic framework for the La Luna Formation, western Venezuela, Palaios, 18 ( 4–5 ), 349 – 366.en_US
dc.identifier.citedreferenceDean, W. E., and M. A. Arthur ( 1998 ), Geochemical expressions of cyclicity in Cretaceous pelagic limestone sequences: Niobrara Formation, Western Interior Seaway, in Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, edited by W. E. Dean and M. A. Arthur, pp. 227 – 255, SEPM Concepts in Sedimentology and Paleontology, Tulsa, Okla.en_US
dc.identifier.citedreferenceDean, W. E., M. A. Arthur, and G. E. Claypool ( 1986 ), Depletion of 13 C in Cretaceous marine organic matter: Source, diagenetic, or environmental signal?, Mar. Geol., 70 ( 1 ), 119 – 157.en_US
dc.identifier.citedreferenceDegens, E. T., M. Behrendt, B. V. Gotthardt, and E. Reppmann ( 1968 ), Metabolic fractionation of carbon isotopes in marine plankton, Deep Sea Res. Oceanogr. Abstr., 15, 11 – 20.en_US
dc.identifier.citedreferenceDemaison, G. J., and G. T. Moore ( 1980 ), Anoxic environments and oil source bed genesis, Am. Assoc. Pet. Geol. Bull., 64, 1179 – 1209.en_US
dc.identifier.citedreferenceDu Vivier, A. D. C., D. Selby, B. B. Sageman, I. Jarvis, D. R. Groecke, and S. Voigt ( 2014 ), Marine Os‐187/Os‐188 isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2, Earth Planet. Sci. Lett., 389, 23 – 33.en_US
dc.identifier.citedreferenceEmerson, S., and J. I. Hedges ( 1988 ), Processes controlling the organic carbon content of open ocean sediments, Paleoceanography, 3, 621 – 634, doi: 10.1029/PA003i005p00621.en_US
dc.identifier.citedreferenceEspitalie, J., J. L. Laporte, M. Madec, F. Marquis, P. Leplat, J. Paulet, and A. Boutefeu ( 1977 ), Rapid method for source rock characterization, and for determination of their petroleum potential and degree of evolution, Rev. Inst. Fr. Pet. Ann. Combust. Liq., 32 ( 1 ), 23 – 42.en_US
dc.identifier.citedreferenceFisher, C. G., and M. A. Arthur ( 2002 ), Water mass characteristics in the Cenomanian US Western Interior seaway as indicated by stable isotopes of calcareous organisms, Palaeogeogr. Palaeoclimatol. Palaeoecol., 188 ( 3–4 ), 189 – 213.en_US
dc.identifier.citedreferenceFisher, C. G., W. W. Hay, and D. L. Eicher ( 1994 ), Oceanic front in the Greenhorn Sea (Late Middle through Late Cenomanian), Paleoceanography, 9 ( 6 ), 879 – 892, doi: 10.1029/94PA02114.en_US
dc.identifier.citedreferenceFloegel, S., W. W. Hay, R. M. DeConto, and A. N. Balukhovsk ( 2005 ), Formation of sedimentary bedding couplets in the Western Interior Seaway of North America—Implications from climate system modeling, Palaeogeogr. Palaeoclimatol. Palaeoecol., 218 ( 1–2 ), 125 – 143.en_US
dc.identifier.citedreferenceFreeman, K. H., and J. M. Hayes ( 1992 ), Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO 2 levels, Global Biogeochem. Cycles, 6 ( 2 ), 185 – 198, doi: 10.1029/92GB00190.en_US
dc.identifier.citedreferenceHandoh, I. C., and T. M. Lenton ( 2003 ), Periodic mid‐Cretaceous oceanic anoxic events linked by oscillations of the phosphorus and oxygen biogeochemical cycles, Global Biogeochem. Cycles, 17 ( 4 ), 1092, doi: 10.1029/2003GB002039.en_US
dc.identifier.citedreferenceHartnett, H. E., R. G. Keil, J. I. Hedges, and A. H. Devol ( 1998 ), Influence of oxygen exposure time on organic carbon preservation in continental margin sediments, Nature, 391, 572 – 575, doi: 10.1038/35351.en_US
dc.identifier.citedreferenceHarvey, H. R., J. H. Tuttl, and J. T. Bell ( 1995 ), Kinetics of phytoplankton decay during simulated sedimentation: Changes in biochemical composition and microbial activity under oxic and anoxic conditions, Geochim. Cosmochim. Acta, 59, 3367 – 3377.en_US
dc.identifier.citedreferenceHattin, D. E. ( 1982 ), Stratigraphy and depositional environment of Smoky Hill Chalk Member, Niobrara Chalk (Upper Cretaceous) of the type area, Western Kansas, Kansas Geol. Soc. Bull., 225, 108.en_US
dc.identifier.citedreferenceHay, W. W., D. L. Eicher, and R. Diner ( 1993 ), Physical oceanography and water masses in the Cretaceous Western Interior Seaway, in Evolution of the Western Interior Basin, GAC Spec. Pap., edited by W. G. E. Caldwell and E. G. Kauffman, pp. 333 – 354, Geol. Assoc. of Canada, Toronto.en_US
dc.identifier.citedreferenceHayes, J. M., B. N. Popp, R. Takigiku, and M. W. Johnson ( 1989 ), An isotopic study of biogeochemical relationships between carbonates and organic matter in the Greenhorn Formation, Geochim. Cosmochim. Acta, 53, 2961 – 2972.en_US
dc.identifier.citedreferenceHayes, J. M., K. H. Freeman, B. N. Popp, and C. H. Hoham ( 1990 ), Compound‐specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes, Org. Geochem., 16 ( 4 ), 1115 – 1128.en_US
dc.identifier.citedreferenceHelz, G. R., C. V. Miller, J. M. Charnock, J. F. W. Mosselmans, R. A. D. Pattrick, C. D. Garner, and D. J. Vaughan ( 1996 ), Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence, Geochim. Cosmochim. Acta, 60 ( 19 ), 3631 – 3642.en_US
dc.identifier.citedreferenceHenrichs, S. M., and W. S. Reeburgh ( 1987 ), Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy, Geomicrobiol. J., 5, 191 – 237.en_US
dc.identifier.citedreferenceHild, E., and H. J. Brumsack ( 1998 ), Major and minor element geochemistry of Lower Aptian sediments from the NW German Basin (core Hoheneggelsen KB 40), Cretaceous Res., 19 ( 5 ), 615 – 633.en_US
dc.identifier.citedreferenceHofmann, P., T. Wagner, and B. Beckmann ( 2003 ), Millennial‐ to centennial‐scale record of African climate variability and organic carbon accumulation in the Coniacian‐Santonian eastern tropical Atlantic (Ocean Drilling Program Site 959, off Ivory Coast and Ghana), Geology, 31 ( 2 ), 135 – 138.en_US
dc.identifier.citedreferenceHunt, J. M. ( 1996 ), Petroleum Geochemistry and Geology, Freeman Press, New York.en_US
dc.identifier.citedreferenceJarvis, I., A. S. Gale, H. C. Jenkyns, and M. A. Pearce ( 2006 ), Secular variation in Late Cretaceous carbon isotopes: A new delta C‐13 carbonate reference curve for the Cenomanian‐Campanian (99.6–70.6 Ma), Geol. Mag., 143 ( 5 ), 561 – 608.en_US
dc.identifier.citedreferenceJarvis, I., J. S. Lignum, D. R. Grocke, H. C. Jenkyns, and M. A. Pearce ( 2011 ), Black shale deposition, atmospheric CO 2 drawdown, and cooling during the Cenomanian‐Turonian Oceanic Anoxic Event, Paleoceanography, 26, PA3201, doi: 10.1029/2010PA002081.en_US
dc.identifier.citedreferenceJenkyns, H. C. ( 2010 ), Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosyst., 11, Q03004, doi: 10.1029/2009GC002788.en_US
dc.identifier.citedreferenceJenkyns, H. C., A. S. Gale, and R. M. Corfield ( 1994 ), Carbon‐isotope and oxygen isotope stratigraphy of the English Chalk and Italian Scaglia and its paleoclimatic significance, Geol. Mag., 131 ( 1 ), 1 – 34.en_US
dc.identifier.citedreferenceJoachimski, M. M. ( 1997 ), Comparison of organic and inorganic carbon isotope patterns across the Frasnian–Famennian boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 132 ( 1 ), 133 – 145.en_US
dc.identifier.citedreferenceJoo, Y. J., and B. B. Sageman ( 2014 ), Cenomanian to Campanian carbon isotope chemostratigraphy from the Western Interior Basin, USA, J. Sediment. Res., 84 ( 7 ), 529 – 542.en_US
dc.identifier.citedreferenceJunium, C. K., and M. A. Arthur ( 2007 ), Nitrogen cycling during the Cretaceous, Cenomanian‐Turonian oceanic anoxic event II, Geochem. Geophys. Geosyst., 8, Q03002, doi: 10.1029/2006GC001328.en_US
dc.identifier.citedreferenceKauffman, E. G. ( 1977 ), Geological and biological overview: Western Interior Cretaceous Basin, in Cretaceous Facies, Faunas and Paleoenvironments Across the Western Interior Basin, edited by E. G. Kauffman, pp. 75 – 99, Mountain Geologist, Denver, Colo.en_US
dc.identifier.citedreferenceKauffman, E. G. ( 1988 ), Concepts and methods of high‐resolution event stratigraphy, Annu. Rev. Earth Planet. Sci., 16, 605 – 654.en_US
dc.identifier.citedreferenceKauffman, E. G., and W. G. E. Caldwell ( 1993 ), The Western Interior basin in space and time, in Evolution of the Western Interior Basin, edited by W. G. E. Caldwell and E. G. Kauffman, pp. 1 – 30, Geol. Assoc. of Canada, Toronto, Ontario.en_US
dc.identifier.citedreferenceKennedy, M. J., and T. Wagner ( 2011 ), Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean, Proc. Natl. Acad. Sci., 108, 9776 – 9781.en_US
dc.identifier.citedreferenceKennedy, M. J., D. Pevear, and R. Hill ( 2002 ), Mineral surface control of organic carbon in black shale, Science, 295, 657 – 660.en_US
dc.identifier.citedreferenceKienast, M., S. E. Calvert, C. Pelejero, and J. O. Grimalt ( 2001 ), A critical review of marine sedimentary δ 13 Corg‐pCO2 estimates: New palaeorecords from the South China Sea and a revisit of other low‐latitude δ 13 Corg‐pCO2 records, Global Biogeochem. Cycles, 15 ( 1 ), 113 – 127, doi: 10.1029/2000GB001285.en_US
dc.identifier.citedreferenceKraal, P., C. P. Slomp, A. Forster, and M. M. M. Kuypers ( 2010 ), Phosphorus cycling from the margin to abyssal depths in the proto‐Atlantic during oceanic anoxic event 2, Palaeogeogr. Palaeoclimatol. Palaeoecol., 295 ( 1 ), 42 – 54.en_US
dc.identifier.citedreferenceKristensen, E. ( 2000 ), Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals, Hydrobiologia, 426, 1 – 24.en_US
dc.identifier.citedreferenceKump, L. R., and M. A. Arthur ( 1999 ), Interpreting carbon‐isotope excursions: Carbonates and organic matter, Chem. Geol., 161 ( 1 ), 181 – 198.en_US
dc.identifier.citedreferenceLocklair, R. E. ( 2007 ), Causes and consequences of marine carbon burial: Examples from the Cretaceous Niobrara Formation and the Permian Brushy Canyon Formation, unpublished PhD thesis, Northwestern Univ., p. 515.en_US
dc.identifier.citedreferenceLocklair, R. E., and B. B. Sageman ( 2008 ), Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, Western Interior, USA: A Coniacian‐Santonian orbital timescale, Earth Planet. Sci. Lett., 269 ( 3–4 ), 539 – 552.en_US
dc.identifier.citedreferenceLocklair, R., B. Sageman, and A. Lerman ( 2011 ), Marine carbon burial flux and the carbon isotope record of Late Cretaceous (Coniacian‐Santonian) Oceanic Anoxic Event III, Sediment. Geol., 235 ( 1–2 ), 38 – 49.en_US
dc.identifier.citedreferenceMarz, C., S. W. Poulton, B. Beckmann, K. Kuester, T. Wagner, and S. Kasten ( 2008 ), Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non‐sulfidic bottom waters, Geochim. Cosmochim. Acta, 72 ( 15 ), 3703 – 3717.en_US
dc.identifier.citedreferenceMcLennan, S. M. ( 2001 ), Relationships between the trace element composition of sedimentary rocks and upper continental crust, Geochem. Geophys. Geosyst., 2, 1021, doi: 10.1029/2000GC000109.en_US
dc.identifier.citedreferenceMeyers, P. A. ( 1994 ), Preservation of elemental and isotopic source identification of sedimentary organic matter, Chem. Geol., 114 ( 3 ), 289 – 302.en_US
dc.identifier.citedreferenceMeyers, P. A. ( 2006 ), Paleoceanographic and paleoclimatic similarities between Mediterranean sapropels and Cretaceous black shales, Palaeogeogr. Palaeoclimatol. Palaeoecol., 235 ( 1–3 ), 305 – 320.en_US
dc.identifier.citedreferenceMeyers, P. A. ( 2014 ), Why are the δ 13 Corg values in Phanerozoic black shales more negative than in modern marine organic matter?, Geochem. Geophys. Geosyst., 15, 3085 – 3106, doi: 10.1002/2014GC005305.en_US
dc.identifier.citedreferenceMeyers, S. R., and B. B. Sageman ( 2004 ), Detection, quantification, and significance of hiatuses in pelagic and hemipelagic strata, Earth Planet. Sci. Lett., 224, 55 – 72.en_US
dc.identifier.citedreferenceMeyers, S. R., B. B. Sageman, and T. W. Lyons ( 2005 ), Organic carbon burial rate and the molybdenum proxy: Theoretical framework and application to Cenomanian‐Turonian oceanic anoxic event 2, Paleoceanography, 20, PA2002, doi: 10.1029/2004PA001068.en_US
dc.identifier.citedreferenceMorford, J. L., A. D. Russell, and S. Emerson ( 2001 ), Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC, Mar. Geol., 174 ( 1–4 ), 355 – 369.en_US
dc.identifier.citedreferenceMort, H. P., T. Adatte, K. B. Follmi, G. Keller, P. Steinmann, V. Matera, Z. Berner, and D. Stuben ( 2007 ), Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2, Geology, 35, 483 – 486.en_US
dc.identifier.citedreferenceMuller‐Karger, F. E., R. Varela, R. Thunell, R. Luerssen, C. M. Hu, and J. J. Walsh ( 2005 ), The importance of continental margins in the global carbon cycle, Geophys. Res. Lett., 32, L01602, doi: 10.1029/2004GL021346.en_US
dc.identifier.citedreferenceNederbragt, A. J., J. W. Thurow, H. Vonhof, and H.‐J. Brumsack ( 2004 ), Modelling oceanic carbon and phosphorus fluxes: Implications for the cause of the late Cenomanian Oceanic Anoxic Event (OAE2), J. Geol. Soc., 161 ( 4 ), 721 – 728.en_US
dc.identifier.citedreferencePagani, M., K. H. Freeman, K. Ohkouchi, and K. Caldeira ( 2002 ), Comparison of water column [CO 2aq ] with sedimentary alkenone‐based estimates: A test of the alkenone‐CO 2 proxy, Paleoceanography, 17 ( 4 ), 1069, doi: 10.1029/2002PA000756.en_US
dc.identifier.citedreferencePancost, R. D., K. A. Freeman, and M. A. Arthur ( 1998 ), Arthur Organic geochemistry of the Cretaceous Western Interior Seaway: A trans‐basinal evaluation, in Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, edited by W. E. Dean and M. A. Arthur, pp. 227 – 255, SEPM Concepts in Sedimentology and Paleontology, Tulsa, Okla.en_US
dc.identifier.citedreferencePedersen, T. F., and S. E. Calvert ( 1990 ), Anoxia vs. productivity: What controls the formation of organic‐carbon‐rich sediments and sedimentary rocks?, Am. Assoc. Pet. Geol. Bull., 74, 454 – 466.en_US
dc.identifier.citedreferencePopp, B. N., R. Takigiku, J. Hayes, J. W. Louda, and E. W. Baker ( 1989 ), The post‐Paleozoic chronology and mechanism of 13 C depletion in primary marine organic matter, Am. J. Sci., 289, 436 – 454.en_US
dc.identifier.citedreferencePratt, L. M. ( 1984 ), Influence of paleoenvironmental factors on the preservation of organic matter in middle Cretaceous Greenhorn Formation near Pueblo, Colorado, Am. Assoc. Pet. Geol. Bull., 68, 1146 – 1159.en_US
dc.identifier.citedreferencePratt, L. M., and L. K. Barlow ( 1985 ), Isotopic and sedimentalogical study of the lower Niobrara Formation, Lyons, Colorado, in Fine‐Grained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes. Society of Economic Paleontology and Mineralogy Field Trip Guidebook, vol. 4, pp. 288, SEPM, Denver, Colo.en_US
dc.identifier.citedreferencePratt, L. M., M. A. Arthur, W. E. Dean, and P. A. Scholle ( 1993 ), Paleo‐oceanographic Cycles and Events during the Late Cretaceous in the Western Interior Seaway of North America, in Evolution of the Western Interior Basin, GAC Spec. Pap., edited by W. G. E. Caldwell and E. G. Kauffman, pp. 333 – 354, Geol. Assoc. of Canada, Toronto.en_US
dc.identifier.citedreferenceRetallack, G. J. ( 2009 ), Greenhouse crises of the past 300 million years, Geol. Soc. Am. Bull., 121 ( 9–10 ), 1441 – 1455.en_US
dc.identifier.citedreferenceRoberts, L. N., and M. A. Kirschbaum ( 1995 ), Paleogeography and the Late Cretaceous of the Western Interior of Middle North America; Coal Distribution and Sediment Accumulation, Professional Paper, vol. 1561, edited by United States Geological Society, pp. 115, USGS, Denver, Colo.en_US
dc.identifier.citedreferencePurdue, E. M., and J. F. Koprivnjak ( 2007 ), Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments, Estuarine Coastal Shelf Sci., 73, 65 – 72.en_US
dc.identifier.citedreferenceSageman, B. B. ( 1989 ), The benthic boundary biofacies model: Hartland Shale Member, Greenhorn Formation (Cenomanian), Western Interior, North America, Palaeogeogr. Palaeoclimatol. Palaeoecol., 74, 87 – 110.en_US
dc.identifier.citedreferenceSageman, B. B., and C. Bina ( 1997 ), Diversity and species abundance patterns in Late Cenomanian black shale biofacies, Western Interior, U.S, Palaios, 12, 449 – 466.en_US
dc.identifier.citedreferenceSageman, B. B., and T. W. Lyons ( 2003 ), Geochemistry of fine‐grained sediments and sedimentary rocks, in Treatise on Geochemistry, edited by F. MacKenzie, pp. 115 – 158, Elsevier, Oxford.en_US
dc.identifier.citedreferenceSageman, B. B., S. R. Meyers, and M. A. Arthur ( 2006 ), Orbital time scale and new C‐isotope record for Cenomanian‐Turonian boundary stratotype, Geology, 34 ( 2 ), 125 – 128.en_US
dc.identifier.citedreferenceSageman, B. B., B. S. Singer, S. R. Meyers, S. E. Siewert, I. Walaszczyk, D. J. Condon, B. R. Jicha, J. D. Obradovich, and D. A. Sawyer ( 2014 ), Integrating 40 Ar/ 39 Ar, U‐Pb, and astronomical clocks in the Cretaceous Niobrara Formation, Western Interior Basin, USA, Geol. Soc. Am. Bull., 7–8, 956 – 973.en_US
dc.identifier.citedreferenceSavdra, C. E. ( 1998 ), Ichnocoenoses of the Niobrara Formation: Implications for benthic oxygenation histories, in Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, edited by W. E. Dean and M. A. Arthur, pp. 227 – 255, SEPM Concepts in Sedimentology and Paleontology, Tulsa, Okla.en_US
dc.identifier.citedreferenceSchink, B. ( 1988 ), Principles and limits of anaerobic degradation: Environmental and technological aspects, in Biology of Anaerobic Microorganisms, edited by A. J. B. Zehnder, pp. 771 – 846, John Wiley, New York.en_US
dc.identifier.citedreferenceSchlanger, S. O., and H. C. Jenkyns ( 1976 ), Cretaceous Oceanic Anoxic Events: Causes and consequences, Geol. Mijnbouw, 55 ( 3–4 ), 179 – 184.en_US
dc.identifier.orcid0000-0003-3371-0036
dc.identifier.name-orcidSheldon, Nathan; 0000-0003-3371-0036en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.