Show simple item record

FRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy

dc.contributor.authorDe Los Santos, Carlaen_US
dc.contributor.authorChang, Ching‐weien_US
dc.contributor.authorMycek, Mary‐annen_US
dc.contributor.authorCardullo, Richard A.en_US
dc.date.accessioned2015-08-05T16:47:51Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationDe Los Santos, Carla; Chang, Ching‐wei ; Mycek, Mary‐ann ; Cardullo, Richard A. (2015). "FRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy." Molecular Reproduction and Development 82(7-8): 587-604.en_US
dc.identifier.issn1040-452Xen_US
dc.identifier.issn1098-2795en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112297
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherSpringer‐Verlagen_US
dc.titleFRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelWomen's and Gender Studiesen_US
dc.subject.hlbsecondlevelObstetrics and Gynecologyen_US
dc.subject.hlbsecondlevelKinesiology and Sportsen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelHumanitiesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112297/1/mrd22501.pdf
dc.identifier.doi10.1002/mrd.22501en_US
dc.identifier.sourceMolecular Reproduction and Developmenten_US
dc.identifier.citedreferenceSinnecker D, Voigt P, Hellwig N, Schaefer M. 2005. Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44: 7085 – 7094.en_US
dc.identifier.citedreferenceStirnweiss A, Hartig R, Gieseler S, Lindquist JA, Reichardt P, Philipsen L, Simeoni L, Poltorak M, Merten C, Zuschratter W, Prokazov Y, Paster W, Stockinger H, Harder T, Gunzer M, Schraven B. 2013. T cell activation results in conformational changes in the Src family kinase Lck to induce its activation. Sci Signal 6: ra13.en_US
dc.identifier.citedreferenceSud D, Mehta G, Mehta K, Linderman, J, Takayama S, Mycek M‐A. 2006a Optical imaging in microfluidic bioreactors enables oxygen monitoring for continuous cell culture. J Biomed Opt 11: 050504.en_US
dc.identifier.citedreferenceSud D, Zhong W, Beer DG, Mycek MA. 2006b Time‐resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models. Optics Express 14: 4412 – 4426.en_US
dc.identifier.citedreferenceSud D, Mycek M‐A. 2009. Calibration and validation of an optical sensor for intracellular oxygen measurements. J Biomed Opt 14: 020506.en_US
dc.identifier.citedreferenceSun Y, Wallrabe H, Booker CF, Day RN, Periasamy A. 2010. Three‐color spectral FRET microscopy localizes three interacting proteins in living cells. Biophys J 99: 1274 – 1283.en_US
dc.identifier.citedreferenceTsutsui H, Karasawa S, Okamura Y, Miyawaki A. 2008. Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods 5: 683 – 685.en_US
dc.identifier.citedreferenceUrayama PK, Mycek MA. 2003. Fluorescence lifetime imaging microscopy of endogenous biological fluorescence In: Mycek MA, Pogue BW, editors. Handbook of biomedical fluorescence. New York: Marcel Dekker, Inc. pp 211 – 236.en_US
dc.identifier.citedreferenceVerma D, Ye N, Meng F, Sachs F, Rahimzadeh J, Hua SZ. 2012. Interplay between cytoskeletal stresses and cell adaptation under chronic flow. PLoS ONE 7: e44167.en_US
dc.identifier.citedreferenceVonesch C. 2009. Fast and automated wavelet‐regularized image restoration in fluorescence microscopy. Ph.D. thesis, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE.en_US
dc.identifier.citedreferenceVonesch C, Unser M. 2009. A fast multilevel algorithm for wavelet‐regularized image restoration. IEEE Trans Image Process 18: 509 – 523.en_US
dc.identifier.citedreferenceWaadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR, Getzoff ED, Schroeder JI. 2014. FRET‐based receptors for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife 3: e01739.en_US
dc.identifier.citedreferenceWaharte F, Brown CM, Coscoy S, Coudrier E, Amblard F. 2005. A Two‐Photon FRAP analysis of the cytoskeleton dynamics in the microvilli of intestinal cells. Biophs J 88: 1467 – 1478.en_US
dc.identifier.citedreferenceWang XF, Uchida T, Coleman DM, Minami S. 1991. A two‐dimensional fluorescence lifetime imaging system using a gated image intensifier. Applied Spectroscopy 45: 360 – 366.en_US
dc.identifier.citedreferenceWaters JC. 2007. Live‐cell fluorescence imaging. Methods Cell Biol 81: 115 – 140.en_US
dc.identifier.citedreferenceWolf DE, Lipscomb AC, Maynard VM. 1988. Causes of nondiffusing lipid in the plasma membrane of mammalian spermatozoa. Biochemistry 27: 860 – 865.en_US
dc.identifier.citedreferenceWolf DE, Scott BK, Millette CF. 1986. The development of regionalized lipid diffusibility in the germ cell plasma membrane during spermatogenesis in the mouse. J Cell Biol 103: 1745 – 1750.en_US
dc.identifier.citedreferenceWolf DE, Voglmayr JK. 1984. Diffusion and regionalization in membranes of maturing ram spermatozoa. J Cell Biol 98: 1678 – 1684.en_US
dc.identifier.citedreferenceWright BK, Andrews LM, Markham J, Jones MR, Stringari C, Digman MA, Gratton E. 2012. NADH distribution in live progenitor stem cells by phasor‐fluorescence lifetime image microscopy. Biophys J 103: L7 – L9.en_US
dc.identifier.citedreferenceXie Y, Ottolia M, John SA, Chen J‐N, Philipson KD. 2008. Conformational changes of a Ca 2+ ‐binding domain of the Na + /Ca 2+ exchanger monitored by FRET in transgenic zebrafish heart. Am J Cell Physiol 295: C388 – C393.en_US
dc.identifier.citedreferenceZhang J, Allen MD. 2007. FRET‐based biosensors for protein kinases: Illuminating the kinome. Mol Biosyst 3: 759 – 765.en_US
dc.identifier.citedreferenceZhong W, Wu M, Chang CW, Merrick KA, Merajver SD, Mycek MA. 2007. Picosecond‐resolution fluorescence lifetime imaging microscopy: A useful tool for sensing molecular interactions in vivo via FRET. Optics Express 15: 18220 – 18235.en_US
dc.identifier.citedreferenceZimmermann G, Papke B, Ismail S, Vartak N, Chandra A, Hoffmann M, Hahn SA, Triola G, Wittinghofer A, Bastiaens PI, Waldmann H. 2013. Small molecule inhibition of the KRAS‐PDEdelta interaction impairs oncogenic KRAS signalling. Nature 497: 638 – 642.en_US
dc.identifier.citedreferenceAxelrod D. 1977, Cell surface heating during fluorescence photobleaching recovery experiments. Biophys J 18: 129 – 131.en_US
dc.identifier.citedreferenceAxelrod D, Koppel DE, Schlessinger J, Elson EL, Webb WW. 1976a. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16: 1315 – 1329.en_US
dc.identifier.citedreferenceAxelrod D, Ravdin P, Koppel DE, Schlessinger J, Webb WW, Elson EL, Podleski TR. 1976b. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci USA 73: 4594 – 4598.en_US
dc.identifier.citedreferenceAxelrod D, Wight A, Webb W, Horwitz A. 1978. Influence of membrane lipids on acetylcholine receptor and lipid probe diffusion in cultured myotube membrane. Biochemistry 17: 3604 – 3609.en_US
dc.identifier.citedreferenceBecker W. 2005. Advanced time‐correlated single photon counting techniques. Berlin: Springer‐Verlag. pp 322 – 344.en_US
dc.identifier.citedreferenceBecker W, Bergmann A, Biskup C. 2007. Multispectral fluorescence lifetime imaging by TCSPC. Microsc Res Tech 70: 403 – 409.en_US
dc.identifier.citedreferenceBecker W, Bergmann A, Weiss G. 2002. Lifetime imaging with the Zeiss LSM‐510. Proc SPIE 4620: 30 – 35.en_US
dc.identifier.citedreferenceBenati E, Bellini V, Borsari S, Dunsby C, Ferrari C, French P, Guanti M, Guardoli D, Koenig K, Pellacani, G, Ponti G, Schianchi S, Talbot C, Seidenari S. 2011. Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy. Skin Res Technol 17: 295 – 303.en_US
dc.identifier.citedreferenceBöhmer M, Pampaloni F, Wahl M, Rahn HJ, Erdmann R, Enderlein J. 2001. Time‐resolved confocal scanning device for ultrasensitive fluorescence detection. Rev Sci Instrum 72: 4145 – 4152.en_US
dc.identifier.citedreferenceBooth MJ, Wilson T. 2004. Low‐cost, frequency‐domain, fluorescence lifetime confocal microscopy. J Microsc 214: 36 – 42.en_US
dc.identifier.citedreferenceBrown EB, Wu, ES, Zipfel W, Webb WW. 1999. Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys J 77: 2837 – 2849.en_US
dc.identifier.citedreferenceBugiel I, König K, Wabnitz H. 1989. Investigation of cell by fluorescence laser scanning microscopy with subnanosecond time resolution. Lasers Life Sci 3: 47 – 53.en_US
dc.identifier.citedreferenceBuranachai C, Kamiyama D, Chiba A, Williams BD, Clegg RM. 2008. Rapid frequency‐domain FLIM spinning disk confocal microscope: Lifetime resolution, image improvement and wavelet analysis. Journal of Fluorescence 18: 929 – 942.en_US
dc.identifier.citedreferenceCardullo RA. 2007. Theoretical principles and practical considerations for fluorescence resonance energy transfer microscopy. Methods Cell Biol 81: 479 – 494.en_US
dc.identifier.citedreferenceCardullo RA, Mungovan RM, Wolf, DE. 1991. Imaging membrane organization and dynamics In: Dewey G, editor. Biophysical and biochemical aspects of fluorescence spectroscopy. New York: Plenum Press. pp 231 – 260.en_US
dc.identifier.citedreferenceCardullo RA, Wolf DE. 1995. Distribution and dynamics of mouse sperm surface galactosyltransferase: Implications for mammalian fertilization. Biochemistry 34: 10027 – 10035.en_US
dc.identifier.citedreferenceCarisey A, Stroud M, Tsang R, Ballestrem C. 2011. Fluorescence recovery after photobleaching. Methods Mol Biol 769: 387 – 402.en_US
dc.identifier.citedreferenceChang CW. 2009. Improving accuracy and precision in biological applications of fluorescence lifetime imaging microscopy. Ph.D. thesis, University of Michigan ( http://deepblue.lib.umich.edu/bitstream/2027.42/63765/1/chingwei_1.pdf ).en_US
dc.identifier.citedreferenceChang CW, Kumar S. 2013. Vinculin tension distributions of individual stress fibers within cell‐matrix adhesions. J Cell Sci 126: 3021 – 3030.en_US
dc.identifier.citedreferenceChang CW, Mycek M‐A. 2010a Enhancing precision in time‐domain fluorescence lifetime imaging. J Biomed Opt 15: 056013.en_US
dc.identifier.citedreferenceChang CW, Mycek M‐A. 2010b Precise fluorophore lifetime mapping in live‐cell, multi‐photon excitation microscopy. Optics Express 18: 8688 – 8696.en_US
dc.identifier.citedreferenceChang CW, Mycek M‐A. 2012a Quantitative molecular imaging in living cells via FLIM In: Geddes CD, editor. Reviews in fluorescence 2010. New York: Springer. pp 173 – 198.en_US
dc.identifier.citedreferenceChang CW, Mycek M‐A. 2012b Total variation versus wavelet‐based methods for image denoising in fluorescence lifetime imaging microscopy. J Biophotonics 5: 449 – 457.en_US
dc.identifier.citedreferenceChang CW, Sud D, Mycek M‐A. 2007. Fluorescence lifetime imaging microscopy. Methods Cell Biol 81: 495 – 524.en_US
dc.identifier.citedreferenceChang CW, Wu M, Merajver SD, Mycek M‐A. 2009. Physiological fluorescence lifetime imaging microscopy improves Forster resonance energy transfer detection in living cells. J Biomed Opt 14: 060502.en_US
dc.identifier.citedreferenceChen LC, Lloyd WR, Chang CW, Sud D, Mycek M‐A. 2013. Fluorescence lifetime imaging microscopy for quantitative biological imaging. Methods Cell Biol 114: 457 – 488.en_US
dc.identifier.citedreferenceChen L‐C, Lloyd WR, Kuo S, Kim HM, Marcelo CL, Feinberg SE, Mycek M‐A. 2014. The potential of label‐free nonlinear optical molecular microscopy to non‐invasively characterize the viability of engineered human tissue constructs. Biomaterials 35: 6667 – 6676.en_US
dc.identifier.citedreferenceClayton AH, Hanley QS, Verveer PJ. 2004. Graphical representation and multicomponent analysis of single‐frequency fluorescence lifetime imaging microscopy data. J Microsc 213: 1 – 5.en_US
dc.identifier.citedreferenceConway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA. 2013. Fluid shear stress on endothelial cells modulates mechanical tension across VE‐cadherin and PECAM‐1. Curr Biol 23: 1024 – 1030.en_US
dc.identifier.citedreferenceCubeddu R, Comelli D, D'Andrea C, Taroni P, Valentini G. 2002. Time‐resolved fluorescence imaging in biology and medicine. J Phys D Appl Phys 35: R61 – R76.en_US
dc.identifier.citedreferenceDavoust J, Devaux PF, Leger L. 1982. Fringe pattern photobleaching, a new method for the measurement of transport coefficients of biological molecules. EMBO J 1: 1233 – 1238.en_US
dc.identifier.citedreferenceDayel MJ, Hom EF, Verkman AS. 1999. Diffusion of green fluorescent protein in the aqueous‐phase lumen of endoplasmic reticulum. Biophys J 76: 2843 – 2851.en_US
dc.identifier.citedreferenceDubinsky JM, Loftus DJ, Fischbach GD, Elson EL. 1989. Formation of acetylcholine receptor clusters in chick myotubes: Migration or new insertion? J Cell Biol 109: 1733 – 1743.en_US
dc.identifier.citedreferenceEgaña LA, Cuevase RA, Baust TB, Parra LA, Leak RK, Hocehndoner S, Peña K, Quiroz M, Hong WC, Dorostkar MM, Janz R, Sitte HH, Torres GE. 2009. Physical and functional interaction between the dopamine transporter and the synaptic vesicle protein synaptogyrin‐3. J Neurosci 29: 4592 ‐ 4604.en_US
dc.identifier.citedreferenceElson EL. 2011. Fluorescence correlation spectroscopy: Past, present, future. Biophys J 101: 2855 ‐ 2870.en_US
dc.identifier.citedreferenceElson DS, Munro I, Requejo‐Isidro J, McGinty J, Dunsby C, Galletly N, Stamp GW, Neil MAA, Lever MJ, Kellett PA, Dymoke‐Bradshaw A, Hares J, French PMW. 2004. Real‐time time‐domain fluorescence lifetime imaging including single‐shot acquisition with a segmented optical image intensifier. New J Phys 6: 180 – 192.en_US
dc.identifier.citedreferenceEsposito A, Gerritsen HC, Wouters FS. 2007. Optimizing frequency‐domain fluorescence lifetime sensing for high‐throughput applications: Photon economy and acquisition speed. J Opt Soc Am A Opt Image Sci Vis 24: 3261 – 3273.en_US
dc.identifier.citedreferenceFörster T. 1948. Intermolecular energy migration and fluorescence. Ann Phys (Leitzig) 2: 55 – 75.en_US
dc.identifier.citedreferenceFritz RD, Letzelter M, Reimann A, Martin K, Fusco L, Ritsma L, Ponsioen B, Fluri E, Schulte‐Merker S, Van Rheenen J, Pertz O. 2013. A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space. Sci Signal 6: rs12.en_US
dc.identifier.citedreferenceGerritsen HC, Sanders R, Draaijer A, Levine YK. 1997. Fluorescence lifetime imaging of oxygen in living cells. J Fluorescence 7: 11 – 16.en_US
dc.identifier.citedreferenceGhiggino KP, Harris MR, Spizzirri PG. 1992. Fluorescence lifetime measurements using a novel fiber‐optic laser scanning confocal microscope. Rev Sci Instrum 63: 2999 – 3002.en_US
dc.identifier.citedreferenceGrashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, McLean MA, Sligar SG, Chen CS, Ha T, Schwartz MA. 2010. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466: 263 – 266.en_US
dc.identifier.citedreferenceHao Y, Macara IG. 2008. Regulation of chromatin binding by a conformational switch in the tail of the Ran exchange factor RCC1. J Cell Biol 182: 827 – 836.en_US
dc.identifier.citedreferenceHinde E, Digman MA, Welch C, Hahn KM, Gratton E. 2012. Biosensor Forster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy. Microsc Res Tech 75: 271 – 281.en_US
dc.identifier.citedreferenceHiraoka Y, Sedat JW, Agard DA. 1987. The use of a charge‐coupled device for quantitative optical microscopy of biological structures. Science 238: 36 – 41.en_US
dc.identifier.citedreferenceHirvonen LM, Fest F, Suhling K. 2014. Wide‐field time‐correlated single‐photon counting (TCSPC) lifetime microscopy with microsecond time resolution. Opt Lett 39: 5602 – 5605.en_US
dc.identifier.citedreferenceHoppe AD, Scott BL, Welliver TP, Straight SW, Swanson JA. 2013. N‐way FRET microscopy of multiple protein‐protein interactions in live cells. PLoS ONE 8: e64760.en_US
dc.identifier.citedreferenceHunnicutt, GR, Koppell, DE, Kwitny, S, Cowan, AE. 2008. Cyclic 3',5'‐AMP causes ADAM1/ADAM2 to rapidly diffuse within the plasma membrane of guinea pig sperm. Biol Reprod 79: 999 – 1007.en_US
dc.identifier.citedreferenceJones AM, Danielson, JAH, ManojKumar SN, Lanquar, V, Gorssman, G, Frommer WB. 2014. Abscisic acid dynamics in rootws detected with genetically encoded FRET sensors. eLIFE 3: e01741.en_US
dc.identifier.citedreferenceKalab P, Soderholm J. 2010. The design of Forster (fluorescence) resonance energy transfer (FRET)‐based molecular sensors for Ran GTPase. Methods 51: 220 – 232.en_US
dc.identifier.citedreferenceKalab P, Weis K, Heald R. 2002. Visualization of a Ran‐GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295: 2452 – 2456.en_US
dc.identifier.citedreferenceKolossov VL, Spring BQ, Sokolowski A, Conour JE, Clegg RM, Kenis PJ, Gaskins HR. 2008. Engineering redox‐sensitive linkers for genetically encoded FRET‐based biosensors. Exp Biol Med (Maywood) 233: 238 – 248.en_US
dc.identifier.citedreferenceKomatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, Matsuda M. 2011. Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22: 4647 – 4656.en_US
dc.identifier.citedreferenceKoppel DE, Axelrod D, Schlessinger J, Elson EL, Webb WW. 1976. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J 16: 315 – 1329.en_US
dc.identifier.citedreferenceKuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ. 2009. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323: 1211 – 1215.en_US
dc.identifier.citedreferenceKusumi A, Tsunoyama TA, Hirosawa KM, Kasai RS, Fujiwara TK. 2014. Tracking single molecules at work in living cells. Nature Chem Biol 10: 524 – 532.en_US
dc.identifier.citedreferenceLakowicz JR. 2006. Principles of fluorescence spectroscopy ( 3rd Ed. ). New York: Springer.en_US
dc.identifier.citedreferenceLam AJ, St‐Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ. 2012. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9: 1005 – 1012.en_US
dc.identifier.citedreferenceLin CC, Melo FA, Ghosh R, Suen KM, Stagg LJ, Kirkpatrick J, Arold ST, Ahmed Z, Ladbury JE. 2012. Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell 149: 1514 – 1524.en_US
dc.identifier.citedreferenceLin HJ, Herman P, Lakowicz JR. 2003. Fluorescence lifetime‐resolved pH imaging of living cells. Cytometry Part A 52A: 77 – 89.en_US
dc.identifier.citedreferenceLiu W, Chen E, Zhao XW, Wan ZP, Gao YR, Davey A, Huang E, Zhang L, Crocetti J, Sandoval G, Joyce MG, Miceli C, Lukszo J, Aravind L, Swat W, Brzostowski J, Pierce SK. 2012. The scaffolding protein synapse‐associated protein 97 is required for enhanced signaling through isotype‐switched IgG memory B cell receptors. Sci Signal 5: ra54.en_US
dc.identifier.citedreferenceLloyd WR, Chen LC, Mycek MA. 2013a Fluorescence spectroscopy In: Morgan SP, Rose FR, Matcher S, editors. Optical techniques in regenerative medicine. CRC Press‐Taylor & Francis Group: Boca Raton, FL. pp 171 – 203.en_US
dc.identifier.citedreferenceLloyd WR, Chen LC, Wilson RH, Mycek MA. 2013b Biophotonics: Clinical fluorescence spectroscopy and imaging In: Maitland DJ, Moore JEJ, editors. Biomedical technology and devices handbook (2nd Ed.). CRC Press‐Taylor & Francis Group: Boca Raton, FL. pp 335 – 358.en_US
dc.identifier.citedreferenceLloyd WR, Wilson RH, Chang CW, Gillispie GD, Mycek MA. 2010. Instrumentation to rapidly acquire fluorescence wavelength‐time matrices of biological tissues. Biomed Opt Express 1: 574 – 586.en_US
dc.identifier.citedreferenceMachacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G. 2009. Coordination of Rho GTPase activities during cell protrusion. Nature 461: 99 – 103.en_US
dc.identifier.citedreferenceMaeder CI, Hink MA, Kinkhabwala A, Mayr R, Bastiaens PI, Knop M. 2007. Spatial regulation of Fus3 MAP kinase activity through a reaction‐diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9: 1319 – 1326.en_US
dc.identifier.citedreferenceMartin‐Fernandez, ML, Clarke DT. 2012. Single molecule fluorescence detection and tracking in mammalian cells: The state‐of‐the‐art and future perspectives. Int J Mol Sci 13: 14742 – 14765.en_US
dc.identifier.citedreferenceMeng F, Sachs F. 2011. Visualizing dynamic cytoplasmic forces with a compliance‐matched FRET sensor. J Cell Sci 124: 261 – 269.en_US
dc.identifier.citedreferenceMeng F, Sachs F. 2012. Orientation‐based FRET sensor for real‐time imaging of cellular forces. J Cell Sci 125: 743 – 750.en_US
dc.identifier.citedreferenceMeng F, Suchyna TM, Sachs F. 2008. A fluorescence energy transfer‐based mechanical stress sensor for specific proteins in situ. Febs J 275: 3072 – 3087.en_US
dc.identifier.citedreferenceMiyata H, Noda N, Fairbairn DJ, Oldenbourg R, Cardullo RA. 2011. Assembly of the fluorescent acrosomal matrix and its fate in fertilization in the water strider, Aquarius remigis. J Cell Physiol 226: 999 – 1006.en_US
dc.identifier.citedreferenceMiyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388: 882 – 887.en_US
dc.identifier.citedreferenceMueller F, Morisaki T, Mazza D, McNally JG. 2012. Minimizing the impact of photoswitching of fluorescent proteins on FRAP analysis. Biophys J. 102: 656 – 665.en_US
dc.identifier.citedreferenceMullineaux CW, Kirchhoff H. 2007. Using fluorescence recovery after photobleaching to measure lipid diffusion in membranes. Methods Mol Biol 400: 267 – 275.en_US
dc.identifier.citedreferenceMunnelly HM, Roess DA, Wade WF, Barisas BZG. 1998. Interferometric fringe fluorescence photobleaching recovery interrogates entire cell surfaces. Biophys J 75: 1131 – 1138.en_US
dc.identifier.citedreferenceMurakoshi H, Wang H, Yasuda R. 2011. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472: 100 – 104.en_US
dc.identifier.citedreferenceNakamura T, Kurokawa K, Kiyokawa E, Matsuda M. 2006. Analysis of the spatiotemporal activation of rho GTPases using Raichu probes. Methods Enzymol 406: 315 – 332.en_US
dc.identifier.citedreferenceNakaya M, Kitano M, Matsuda M, Nagata S. 2008. Spatiotemporal activation of Rac1 for engulfment of apoptotic cells. Proc Natl Acad Sci USA 105: 9198 – 9203.en_US
dc.identifier.citedreferenceNguyen AW, Daugherty PS. 2005. Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23: 355 – 360.en_US
dc.identifier.citedreferenceOtt G, Shirkey N, Haimo LT, Cardullo RA, Thaler CD. 2015. Germ cell hub position in a Heteropteran testis correlates with the sequence and location of spermatogenesis and production of elaborate sperm bundles. Mol Reprod Devel 82: 295 – 304.en_US
dc.identifier.citedreferenceOttolia M, Phillipson KD, John S. 2004. Conformational changes of the Ca 2+ regulatory site of the Na + ‐Ca 2+ exchanger detected by FRET. Biophys J 87: 899 – 906.en_US
dc.identifier.citedreferenceOuyang M, Lu S, Li XY, Xu J, Seong J, Giepmans BN, Shyy JY, Weiss SJ, Wang Y. 2008. Visualization of polarized membrane type 1 matrix metalloproteinase activity in live cells by fluorescence resonance energy transfer imaging. J Biol Chem 283: 17740 – 17748.en_US
dc.identifier.citedreferenceOwen DM, Auksorius E, Manning HB, Talbot CB, de Beule PA, Dunsby C, Neil MA, French PM. 2007. Excitation‐resolved hyperspectral fluorescence lifetime imaging using a UV‐extended supercontinuum source. Opt Lett 32: 3408 – 3410.en_US
dc.identifier.citedreferencePadilla‐Parra S, Tramier M. 2012. FRET microscopy in the living cell: Different approaches, strengths and weaknesses. Bioessays 34: 369 – 376.en_US
dc.identifier.citedreferencePelet S, Previte MJ, So PT. 2006. Comparing the quantification of Forster resonance energy transfer measurement accuracies based on intensity, spectral, and lifetime imaging. J Biomed Opt 11: 34017.en_US
dc.identifier.citedreferenceProvenzano PP, Eliceiri KW, Keely PJ. 2009. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 26: 357 – 370.en_US
dc.identifier.citedreferenceRedford GI, Clegg RM. 2005. Polar plot representation for frequency‐domain analysis of fluorescence lifetimes. Journal of Fluorescence 15: 805 – 815.en_US
dc.identifier.citedreferenceSakai R, Repunte‐Canonigo V, Raj CD, Knopfel T. 2001. Design and characterization of a DNA‐encoded, voltage‐sensitive fluorescent protein. Eur J Neurosci 13: 2314 – 2318.en_US
dc.identifier.citedreferenceSanders R, Draaijer A, Gerritsen HC, Houpt PM, Levine YK. 1995. Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. Anal Biochem 227: 302 – 308.en_US
dc.identifier.citedreferenceSchlessinger J, Koppel DE, Axelrod D, Jacobson K, Webb WW, Elson EL. 1976. Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci USA 73: 2409 – 2413.en_US
dc.identifier.citedreferenceSchlessinger J, Axelrod D, Koppel DE, Webb WW, Elson EL. 1977. Lateral transport of a lipid probe and labeled proteins on a cell membrane. Science 195: 307 – 309.en_US
dc.identifier.citedreferenceSharman KK, Periasamy A, Ashworth H, Demas JN, Snow NH. 1999. Error analysis of the rapid lifetime determination method for double‐exponential decays and new windowing schemes. Analytical Chemistry 71: 947 – 952.en_US
dc.identifier.citedreferenceShimozono S, Hosoi H, Mizuno H, Fukano T, Tahara T, Miyawaki A. 2006. Concatenation of cyan and yellow fluorescent proteins for efficient resonance energy transfer. Biochemistry 45: 6267 – 6271.en_US
dc.identifier.citedreferenceSkala MC, Riching KM, Gendron‐Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N. 2007. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci USA 104: 19494 – 19499.en_US
dc.identifier.citedreferenceSprague BL, Pego RL, Stavreva DA, McNally JG. 2004. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J 86: 3473 – 3495.en_US
dc.identifier.citedreferenceSpring BQ, Clegg RM. 2009. Image analysis for denoising full‐field frequency‐domain fluorescence lifetime images. J Microsc 235: 221 – 237.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.