Early weakening processes inside thrust fault
dc.contributor.author | Lacroix, B. | en_US |
dc.contributor.author | Tesei, T. | en_US |
dc.contributor.author | Oliot, E. | en_US |
dc.contributor.author | Lahfid, A. | en_US |
dc.contributor.author | Collettini, C. | en_US |
dc.date.accessioned | 2015-09-01T19:30:02Z | |
dc.date.available | 2016-08-08T16:18:39Z | en |
dc.date.issued | 2015-07 | en_US |
dc.identifier.citation | Lacroix, B.; Tesei, T.; Oliot, E.; Lahfid, A.; Collettini, C. (2015). "Early weakening processes inside thrust fault." Tectonics 34(7): 1396-1411. | en_US |
dc.identifier.issn | 0278-7407 | en_US |
dc.identifier.issn | 1944-9194 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/113098 | |
dc.description.abstract | Observations from deep boreholes at several locations worldwide, laboratory measurements of frictional strength on quartzo‐feldspathic materials, and earthquake focal mechanisms indicate that crustal faults are strong (apparent friction μ ≥ 0.6). However, friction experiments on phyllosilicate‐rich rocks and some geophysical data have demonstrated that some major faults are considerably weaker. This weakness is commonly considered to be characteristic of mature faults in which rocks are altered by prolonged deformation and fluid‐rock interaction (i.e., San Andreas, Zuccale, and Nankai Faults). In contrast, in this study we document fault weakening occurring along a marly shear zone in its infancy (<30 m displacement). Geochemical mass balance calculation and microstructural data show that a massive calcite departure (up to 50 vol %) from the fault rocks facilitated the concentration and reorganization of weak phyllosilicate minerals along the shear surfaces. Friction experiments carried out on intact foliated samples of host marls and fault rocks demonstrated that this structural reorganization lead to a significant fault weakening and that the incipient structure has strength and slip behavior comparable to that of the major weak faults previously documented. These results indicate that some faults, especially those nucleating in lithologies rich of both clays and high‐solubility minerals (such as calcite), might experience rapid mineralogical and structural alteration and become weak even in the early stages of their activity.Key PointsMicrostructural characterization of an incipient thrust faultFault zone is affected by a large calcite departure compared to host sedimentsFault frictional strength very low even if fault experienced low displacement | en_US |
dc.publisher | Elsevier | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | phyllosilicates | en_US |
dc.subject.other | thrust fault | en_US |
dc.subject.other | pressure solution | en_US |
dc.subject.other | friction | en_US |
dc.subject.other | mass balance | en_US |
dc.subject.other | weakening | en_US |
dc.title | Early weakening processes inside thrust fault | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Geological Sciences | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/113098/1/tect20287.pdf | |
dc.identifier.doi | 10.1002/2014TC003716 | en_US |
dc.identifier.source | Tectonics | en_US |
dc.identifier.citedreference | Scuderi, M. M., A. R. Niemeijer, C. Collettini, and C. Marone ( 2013 ), Frictional properties and slip stability of active faults within carbonate–evaporite sequences: The role of dolomite and anhydrite, Earth Planet. Sci. Lett., 369–370, 220 – 232. | en_US |
dc.identifier.citedreference | Moore, D. E., and M. J. Rymer ( 2007 ), Talc‐bearing serpentinite and the creeping section of the San Andreas Fault, Nature, 448, 795 – 797, doi: 10.1038/nature06064. | en_US |
dc.identifier.citedreference | Newton, R. C., and C. E. Manning ( 2000 ), Quartz solubility in H 2 O‐NaCl and H 2 O‐CO 2 solutions at deep crust‐upper mantle pressures and temperatures: 2–15 kbar and 500–900°C, Geochim. Cosmochim. Acta, 64, 2993 – 3005, doi: 10.1016/S0016-7037(00)00402-6. | en_US |
dc.identifier.citedreference | Newton, R. C., and C. E. Manning ( 2002 ), Experimental determination of calcite solubility in H 2 O‐NaCl solutions at deep crust/upper mantle pressures and temperatures: Implications for metasomatic processes in shear zones, Am. Mineral., 87, 1401 – 1409. | en_US |
dc.identifier.citedreference | Ramsay, J. G. ( 1967 ), Folding and Fracturing of Rocks, International Series in the Earth and Planetary Sciences, 568 pp., McGraw‐Hill, New York. | en_US |
dc.identifier.citedreference | Ramsay, J. G. ( 1980 ), Shear zone geometry: A review, J. Struct. Geol., 2, 83 – 99, doi: 10.1016/0191-8141(80)90038-3. | en_US |
dc.identifier.citedreference | Ramsay, J. G., and D. S. Wood ( 1973 ), The geometric effects of volume change during deformation processes, Tectonophysics, 16, 263 – 277, doi: 10.1016/0040-1951(73)90015-2. | en_US |
dc.identifier.citedreference | Remacha, E., and L. P. Fernandez ( 2003 ), High‐resolution correlation patterns in the turbidite systems of the Hecho Group (South‐Central Pyrenees, Spain), Mar. Pet. Geol., 20, 711 – 726, doi: 10.1016/j.marpetgeo.2003.09.003. | en_US |
dc.identifier.citedreference | Renard, F., P. Ortoleva, and J. P. Gratier ( 1997 ), Pressure solution in sandstones: Influence of clays and dependence on temperature and stress, Tectonophysics, 280, 257 – 266, doi: 10.1016/S0040-1951(97)00039-5. | en_US |
dc.identifier.citedreference | Sibson, R. H., and G. Xie ( 1998 ), Dip range for intracontinental reverse fault ruptures: Truth not stranger than friction?, Bull. Seismol. Soc. Am., 88, 1014 – 1022. | en_US |
dc.identifier.citedreference | Suppe, J. ( 2007 ), Absolute fault and crustal strength from wedge tapers, Geology, 35, 1127 – 1130. | en_US |
dc.identifier.citedreference | Teixell, A. ( 1996 ), The Anso transect of the southern Pyrenees: Basement and cover thrust geometries, J. Geol. Soc., 153, 301 – 310, doi: 10.1144/gsjgs.153.2.0301. | en_US |
dc.identifier.citedreference | Tesei, T., C. Collettini, B. M. Carpenter, C. Viti, and C. Marone ( 2012 ), Frictional strength and healing behavior of phyllosilicate‐rich faults, J. Geophys. Res., 117, B09402, doi: 10.1029/2012JB009204. | en_US |
dc.identifier.citedreference | Tesei, T., C. Collettini, C. Viti, and M. R. Barchi ( 2013 ), Fault architecture and deformation mechanisms in exhumed analogues of seismogenic carbonate‐bearing thrusts, J. Struct. Geol., 55. | en_US |
dc.identifier.citedreference | Tesei, T., C. Collettini, M. R. Barchi, B. M. Carpenter, and G. Di Stefano ( 2014 ), Heterogeneous strength and fault zone complexity of carbonate‐bearing thrusts with possible implications for seismicity, Earth Planet. Sci. Lett., 408, 307 – 318. | en_US |
dc.identifier.citedreference | Tikoff, B., and H. Fossen ( 1993 ), Simultaneous pure and simple shear: The unifying deformation matrix, Tectonophysics, 217, 267 – 283, doi: 10.1016/0040-1951(93)90010-H. | en_US |
dc.identifier.citedreference | Torgersen, E., and G. Viola ( 2014 ), Structural and temporal evolution of a reactivated brittle‐ductile fault—Part I: Fault architecture, strain localization mechanisms and deformation history, Earth Planet. Sci. Lett., 407, 205 – 220. | en_US |
dc.identifier.citedreference | Townend, J., and M. D. Zoback ( 2000 ), How faulting keeps the crust strong, Geology, 28, 399 – 402. | en_US |
dc.identifier.citedreference | Vidal, O., T. Parra, and F. Trotet ( 2001 ), A thermodynamic model for Fe‐Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100° to 600°c, 1 to 25 kb range, Am. J. Sci., 301, 557 – 592, doi: 10.2475/ajs.301.6.557. | en_US |
dc.identifier.citedreference | Vidal, O., T. Parra, and P. Vieillard ( 2005 ), Thermodynamic properties of the Tschermak solid solution in Fe‐chlorite: Application to natural examples and possible role of oxidation, Am. Mineral., 90, 347 – 358. | en_US |
dc.identifier.citedreference | Vidal, O., V. De Andrade, E. Lewin, M. Munoz, T. Parra, and S. Pascarelli ( 2006 ), P–T‐deformation‐Fe 3+/ Fe 2+ mapping at the thin section scale and comparison with XANES mapping: Application to a garnet‐bearing metapelite from the Sambagawa metamorphic belt (Japan), J. Metamorph. Geol., 24, 669 – 683, doi: 10.1111/j.1525-1314.2006.00661.x. | en_US |
dc.identifier.citedreference | Viti, C., C. Collettini, and T. Tesei ( 2014 ), Pressure solution seams in carbonatic fault rocks: Mineralogy, micro/nanostructures and deformation mechanism, Contrib. Mineral. Petrol., 167, 1 – 15, doi: 10.1007/s00410-014-0970-1. | en_US |
dc.identifier.citedreference | Willemse, E. J. M., D. C. P. Peacock, and A. Aydin ( 1997 ), Nucleation and growth of strike‐ slip faults in limestone from Somerset, UK, J. Struct. Geol., 19, 1461 – 1477, doi: 10.1016/S0191-8141(97)00056-4. | en_US |
dc.identifier.citedreference | Wintsch, R. P., R. Christoffersen, and A. K. Kronenberg ( 1995 ), Fluid‐rock reaction weakening of fault zones, J. Geophys. Res., 100, 13,021 – 13,032, doi: 10.1029/94JB02622. | en_US |
dc.identifier.citedreference | Zoback, M. D., et al. ( 1987 ), New evidence on the state of stress of the San Andreas Fault system, Science, 238, 1105 – 1111. | en_US |
dc.identifier.citedreference | Aharonov, E., and R. Katsman ( 2009 ), Interaction between pressure solution and clays in stylolite development: Insights from modeling, Am. J. Sci., 309, 607 – 632, doi: 10.2475/07.2009.04. | en_US |
dc.identifier.citedreference | Alvarez, W., T. Engelder, and P. A. Geiser ( 1978 ), Classification of solution cleavage in pelagic limestones, Geology, 6, 263 – 266. | en_US |
dc.identifier.citedreference | Baird, G. B., and P. J. Hudleston ( 2007 ), Modeling the influence of tectonic extrusion and volume loss on the geometry, displacement, vorticity, and strain compatibility of ductile shear zones, J. Struct. Geol., 29, 1665 – 1678, doi: 10.1016/j.jsg.2007.06.012. | en_US |
dc.identifier.citedreference | Baumgartner, L. P., and S. N. Olsen ( 1995 ), A least‐squares approach to mass transport calculations using the isocon method, Econ. Geol., 90, 1261 – 1270. | en_US |
dc.identifier.citedreference | Berthé, D., P. Choukroune, and P. Jegouzo ( 1979 ), Orthogneiss, mylonite and non coaxial deformation of granites: The example of the South Armorican Shear Zone, J. Struct. Geol., 1, 31 – 42, doi: 10.1016/0191-8141(79)90019-1. | en_US |
dc.identifier.citedreference | Bos, B., and C. J. Spiers ( 2001 ), Experimental investigation into the microstructural and mechanical evolution of phyllosilicate‐bearing fault rock under conditions favouring pressure solution, J. Struct. Geol., 23, 1187 – 1202, doi: 10.1016/S0191-8141(00)00184-X. | en_US |
dc.identifier.citedreference | Bos, B., C. J. Peach, and C. J. Spiers ( 2000 ), Frictional‐viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution, Tectonophysics, 327, 173 – 194, doi: 10.1016/S0040-1951(00)00168-2. | en_US |
dc.identifier.citedreference | Brantley, S. L. ( 1992 ), The effect of fluid chemistry on quartz microcrack lifetimes, Earth Planet. Sci. Lett., 113, 145 – 156, doi: 10.1016/0012-821X(92)90216-I. | en_US |
dc.identifier.citedreference | Buatier, M., B. Lacroix, P. Labaume, V. Moutarlier, D. Charpentier, J. P. Sizun, and A. Travé ( 2012 ), Microtextural investigation (SEM and TEM study) of phyllosilicates in a major thrust fault zone (Monte Perdido, southern Pyrenees): Impact on fault reactivation, Swiss J. Geosci., 105, 313 – 324, doi: 10.1007/s00015-012-0098-0. | en_US |
dc.identifier.citedreference | Byerlee, J. ( 1978 ), Friction of rocks, Pure Appl. Geophys., 116, 615 – 626. | en_US |
dc.identifier.citedreference | Carpenter, B. M., C. Marone, and D. M. Saffer ( 2011 ), Weakness of the San Andreas Fault revealed by samples from the active fault zone, Nat. Geosci., 4, 251 – 254. | en_US |
dc.identifier.citedreference | Chester, F. M., J. P. Evans, and R. L. Biegel ( 1993 ), Internal structure and weakening mechanisms of the San Andreas Fault, J. Geophys. Res., 98, 771 – 786, doi: 10.1029/92JB01866. | en_US |
dc.identifier.citedreference | Collettini, C., and R. H. Sibson ( 2001 ), Normal faults, normal friction?, Geology, 29, 927 – 930. | en_US |
dc.identifier.citedreference | Collettini, C., A. Niemeijer, C. Viti, and C. Marone ( 2009 ), Fault zone fabric and fault weakness, Nature, 462, 907 – 910. | en_US |
dc.identifier.citedreference | Collettini, C., A. R. Niemeijer, C. Viti, S. A. F. Smith, and C. Marone ( 2011 ), Fault structure, frictional properties and mixed‐mode fault slip behaviour, Earth Planet. Sci. Lett., 311, 316 – 327, doi: 10.1016/j.epsl.2011.09.020. | en_US |
dc.identifier.citedreference | Collettini, C., G. Di Stefano, B. Carpenter, P. Scarlato, T. Tesei, S. Mollo, F. Trippetta, C. Marone, G. Romeo, and L. Chiaraluce ( 2014 ), A novel and versatile apparatus for brittle rock deformation, Int. J. Rock Mech. Min. Sci., 66, 114 – 123. | en_US |
dc.identifier.citedreference | Cubas, N., J. P. Avouac, P. Souloumiac, and Y. Leroy ( 2013 ), Megathrust friction determined from mechanical analysis of the forearc in the Maule earthquake area, Earth Planet. Sci. Lett., 381, 92 – 103. | en_US |
dc.identifier.citedreference | Dieterich, J. H. ( 1972 ), Time‐dependent friction in rocks, J. Geophys. Res., 77, 3690 – 3697, doi: 10.1029/JB077i020p03690. | en_US |
dc.identifier.citedreference | Fagereng, Å. ( 2013 ), On stress and strain in a continuous‐discontinuous shear zone undergoing simple shear and volume loss, J. Struct. Geol., 50, 44 – 53, doi: 10.1016/j.jsg.2012.02.016. | en_US |
dc.identifier.citedreference | Fagereng, A., F. Remitti, and R. H. Sibson ( 2010 ), Shear veins observed within anisotropic fabric at high angles to the maximum compressive stress, Nat. Geosci., 3, 482 – 485. | en_US |
dc.identifier.citedreference | Fein, J. B., and J. V. Walther ( 1987 ), Calcite solubility in supercritical CO 2 ‐H 2 O fluids, Geochim. Cosmochim. Acta, 51, 1665 – 1673, doi: 10.1016/0016-7037(87)90346-2. | en_US |
dc.identifier.citedreference | Gratier, J. P., and J. F. Gamond ( 1990 ), Transition between seismic and aseismic deformation in the upper crust, Geol. Soc. London, Spec. Publ., 54, 461 – 473, doi: 10.1144/GSL.SP.1990.054.01.42. | en_US |
dc.identifier.citedreference | Gratier, J.‐P., J. Richard, F. Renard, S. Mittempergher, M. L. Doan, G. Di Toro, J. Hadizadeh, and A. M. Boullier ( 2011 ), Aseismic sliding of active faults by pressure solution creep: Evidence from the San Andreas Fault observatory at depth, Geology, 39, 1131 – 1134. | en_US |
dc.identifier.citedreference | Gratier, J.‐P., D. K. Dysthe, and F. Renard ( 2013 ), Chapter 2: The role of pressure solution creep in the ductility of the Earth's upper crust, in Advances in Geophysics, edited by R. Dmowska, pp. 47 – 179, Elsevier. | en_US |
dc.identifier.citedreference | Holdsworth, R. E. ( 2004 ), Weak faults‐rotten cores, Science, 303, 81 – 182. | en_US |
dc.identifier.citedreference | Hubbert, K., and M. Rubey ( 1959 ), Role of fluid pressure in mechanics of overthrust faulting, Geol. Soc. Am. Bull., 70, 115 – 166, doi: 10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2. | en_US |
dc.identifier.citedreference | Ikari, M. J., and D. M. Saffer ( 2011 ), Comparison of frictional strength and velocity dependence between fault zones in the Nankai accretionary complex, Geochem. Geophys. Geosyst., 12, Q0AD11, doi: 10.1029/2010GC003442. | en_US |
dc.identifier.citedreference | Lacroix, B., M. Buatier, P. Labaume, A. Travé, M. Dubois, D. Charpentier, S. Ventalon, and D. Convert‐Gaubier ( 2011 ), Microtectonic and geochemical characterization of thrusting in a foreland basin: Example of the South‐Pyrenean orogenic wedge (Spain), J. Struct. Geol., 33, 1359 – 1377. | en_US |
dc.identifier.citedreference | Lacroix, B., D. Charpentier, M. Buatier, T. Vennemann, P. Labaume, T. Adatte, A. Travé, and M. Dubois ( 2012 ), Formation of chlorite during thrust fault reactivation. Record of fluid origin and P–T conditions in the Monte Perdido thrust fault (southern Pyrenees), Contrib. Mineral. Petrol., 163, 1083 – 1102. | en_US |
dc.identifier.citedreference | Lahfid, A., O. Beyssac, E. Deville, F. Negro, C. Chopin, and B. Goffé ( 2010 ), Evolution of the Raman spectrum of carbonaceous material in low‐grade metasediments of the Glarus Alps (Switzerland), Terra Nova, 22, 354 – 360, doi: 10.1111/j.1365-3121.2010.00956.x. | en_US |
dc.identifier.citedreference | Lockner, D. A., C. Morrow, D. Moore, and S. Hickman ( 2011 ), Low strength of deep San Andreas Fault gouge from SAFOD core, Nature, 472, 82 – 85. | en_US |
dc.identifier.citedreference | Marone, C. ( 1998 ), Laboratory‐derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 643 – 696. | en_US |
dc.identifier.citedreference | Massironi, M., A. Bistacchi, and L. Menegon ( 2011 ), Misoriented faults in exhumed metamorphic complexes: Rule or exception?, Earth Planet. Sci. Lett., 307, 233 – 239, doi: 10.1016/j.epsl.2011.04.041. | en_US |
dc.identifier.citedreference | Meere, P. A., K. F. Mulchrone, and M. Timmerman ( 2013 ), Shear folding in low‐grade metasedimentary rocks: Reverse shear along cleavage at a high angle to the maximum compressive stress, Geology, 41, 879 – 882, doi: 10.1130/G34150.1. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.