Show simple item record

Early weakening processes inside thrust fault

dc.contributor.authorLacroix, B.en_US
dc.contributor.authorTesei, T.en_US
dc.contributor.authorOliot, E.en_US
dc.contributor.authorLahfid, A.en_US
dc.contributor.authorCollettini, C.en_US
dc.date.accessioned2015-09-01T19:30:02Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationLacroix, B.; Tesei, T.; Oliot, E.; Lahfid, A.; Collettini, C. (2015). "Early weakening processes inside thrust fault." Tectonics 34(7): 1396-1411.en_US
dc.identifier.issn0278-7407en_US
dc.identifier.issn1944-9194en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113098
dc.description.abstractObservations from deep boreholes at several locations worldwide, laboratory measurements of frictional strength on quartzo‐feldspathic materials, and earthquake focal mechanisms indicate that crustal faults are strong (apparent friction μ ≥ 0.6). However, friction experiments on phyllosilicate‐rich rocks and some geophysical data have demonstrated that some major faults are considerably weaker. This weakness is commonly considered to be characteristic of mature faults in which rocks are altered by prolonged deformation and fluid‐rock interaction (i.e., San Andreas, Zuccale, and Nankai Faults). In contrast, in this study we document fault weakening occurring along a marly shear zone in its infancy (<30 m displacement). Geochemical mass balance calculation and microstructural data show that a massive calcite departure (up to 50 vol %) from the fault rocks facilitated the concentration and reorganization of weak phyllosilicate minerals along the shear surfaces. Friction experiments carried out on intact foliated samples of host marls and fault rocks demonstrated that this structural reorganization lead to a significant fault weakening and that the incipient structure has strength and slip behavior comparable to that of the major weak faults previously documented. These results indicate that some faults, especially those nucleating in lithologies rich of both clays and high‐solubility minerals (such as calcite), might experience rapid mineralogical and structural alteration and become weak even in the early stages of their activity.Key PointsMicrostructural characterization of an incipient thrust faultFault zone is affected by a large calcite departure compared to host sedimentsFault frictional strength very low even if fault experienced low displacementen_US
dc.publisherElsevieren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherphyllosilicatesen_US
dc.subject.otherthrust faulten_US
dc.subject.otherpressure solutionen_US
dc.subject.otherfrictionen_US
dc.subject.othermass balanceen_US
dc.subject.otherweakeningen_US
dc.titleEarly weakening processes inside thrust faulten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113098/1/tect20287.pdf
dc.identifier.doi10.1002/2014TC003716en_US
dc.identifier.sourceTectonicsen_US
dc.identifier.citedreferenceScuderi, M. M., A. R. Niemeijer, C. Collettini, and C. Marone ( 2013 ), Frictional properties and slip stability of active faults within carbonate–evaporite sequences: The role of dolomite and anhydrite, Earth Planet. Sci. Lett., 369–370, 220 – 232.en_US
dc.identifier.citedreferenceMoore, D. E., and M. J. Rymer ( 2007 ), Talc‐bearing serpentinite and the creeping section of the San Andreas Fault, Nature, 448, 795 – 797, doi: 10.1038/nature06064.en_US
dc.identifier.citedreferenceNewton, R. C., and C. E. Manning ( 2000 ), Quartz solubility in H 2 O‐NaCl and H 2 O‐CO 2 solutions at deep crust‐upper mantle pressures and temperatures: 2–15 kbar and 500–900°C, Geochim. Cosmochim. Acta, 64, 2993 – 3005, doi: 10.1016/S0016-7037(00)00402-6.en_US
dc.identifier.citedreferenceNewton, R. C., and C. E. Manning ( 2002 ), Experimental determination of calcite solubility in H 2 O‐NaCl solutions at deep crust/upper mantle pressures and temperatures: Implications for metasomatic processes in shear zones, Am. Mineral., 87, 1401 – 1409.en_US
dc.identifier.citedreferenceRamsay, J. G. ( 1967 ), Folding and Fracturing of Rocks, International Series in the Earth and Planetary Sciences, 568 pp., McGraw‐Hill, New York.en_US
dc.identifier.citedreferenceRamsay, J. G. ( 1980 ), Shear zone geometry: A review, J. Struct. Geol., 2, 83 – 99, doi: 10.1016/0191-8141(80)90038-3.en_US
dc.identifier.citedreferenceRamsay, J. G., and D. S. Wood ( 1973 ), The geometric effects of volume change during deformation processes, Tectonophysics, 16, 263 – 277, doi: 10.1016/0040-1951(73)90015-2.en_US
dc.identifier.citedreferenceRemacha, E., and L. P. Fernandez ( 2003 ), High‐resolution correlation patterns in the turbidite systems of the Hecho Group (South‐Central Pyrenees, Spain), Mar. Pet. Geol., 20, 711 – 726, doi: 10.1016/j.marpetgeo.2003.09.003.en_US
dc.identifier.citedreferenceRenard, F., P. Ortoleva, and J. P. Gratier ( 1997 ), Pressure solution in sandstones: Influence of clays and dependence on temperature and stress, Tectonophysics, 280, 257 – 266, doi: 10.1016/S0040-1951(97)00039-5.en_US
dc.identifier.citedreferenceSibson, R. H., and G. Xie ( 1998 ), Dip range for intracontinental reverse fault ruptures: Truth not stranger than friction?, Bull. Seismol. Soc. Am., 88, 1014 – 1022.en_US
dc.identifier.citedreferenceSuppe, J. ( 2007 ), Absolute fault and crustal strength from wedge tapers, Geology, 35, 1127 – 1130.en_US
dc.identifier.citedreferenceTeixell, A. ( 1996 ), The Anso transect of the southern Pyrenees: Basement and cover thrust geometries, J. Geol. Soc., 153, 301 – 310, doi: 10.1144/gsjgs.153.2.0301.en_US
dc.identifier.citedreferenceTesei, T., C. Collettini, B. M. Carpenter, C. Viti, and C. Marone ( 2012 ), Frictional strength and healing behavior of phyllosilicate‐rich faults, J. Geophys. Res., 117, B09402, doi: 10.1029/2012JB009204.en_US
dc.identifier.citedreferenceTesei, T., C. Collettini, C. Viti, and M. R. Barchi ( 2013 ), Fault architecture and deformation mechanisms in exhumed analogues of seismogenic carbonate‐bearing thrusts, J. Struct. Geol., 55.en_US
dc.identifier.citedreferenceTesei, T., C. Collettini, M. R. Barchi, B. M. Carpenter, and G. Di Stefano ( 2014 ), Heterogeneous strength and fault zone complexity of carbonate‐bearing thrusts with possible implications for seismicity, Earth Planet. Sci. Lett., 408, 307 – 318.en_US
dc.identifier.citedreferenceTikoff, B., and H. Fossen ( 1993 ), Simultaneous pure and simple shear: The unifying deformation matrix, Tectonophysics, 217, 267 – 283, doi: 10.1016/0040-1951(93)90010-H.en_US
dc.identifier.citedreferenceTorgersen, E., and G. Viola ( 2014 ), Structural and temporal evolution of a reactivated brittle‐ductile fault—Part I: Fault architecture, strain localization mechanisms and deformation history, Earth Planet. Sci. Lett., 407, 205 – 220.en_US
dc.identifier.citedreferenceTownend, J., and M. D. Zoback ( 2000 ), How faulting keeps the crust strong, Geology, 28, 399 – 402.en_US
dc.identifier.citedreferenceVidal, O., T. Parra, and F. Trotet ( 2001 ), A thermodynamic model for Fe‐Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100° to 600°c, 1 to 25 kb range, Am. J. Sci., 301, 557 – 592, doi: 10.2475/ajs.301.6.557.en_US
dc.identifier.citedreferenceVidal, O., T. Parra, and P. Vieillard ( 2005 ), Thermodynamic properties of the Tschermak solid solution in Fe‐chlorite: Application to natural examples and possible role of oxidation, Am. Mineral., 90, 347 – 358.en_US
dc.identifier.citedreferenceVidal, O., V. De Andrade, E. Lewin, M. Munoz, T. Parra, and S. Pascarelli ( 2006 ), P–T‐deformation‐Fe 3+/ Fe 2+ mapping at the thin section scale and comparison with XANES mapping: Application to a garnet‐bearing metapelite from the Sambagawa metamorphic belt (Japan), J. Metamorph. Geol., 24, 669 – 683, doi: 10.1111/j.1525-1314.2006.00661.x.en_US
dc.identifier.citedreferenceViti, C., C. Collettini, and T. Tesei ( 2014 ), Pressure solution seams in carbonatic fault rocks: Mineralogy, micro/nanostructures and deformation mechanism, Contrib. Mineral. Petrol., 167, 1 – 15, doi: 10.1007/s00410-014-0970-1.en_US
dc.identifier.citedreferenceWillemse, E. J. M., D. C. P. Peacock, and A. Aydin ( 1997 ), Nucleation and growth of strike‐ slip faults in limestone from Somerset, UK, J. Struct. Geol., 19, 1461 – 1477, doi: 10.1016/S0191-8141(97)00056-4.en_US
dc.identifier.citedreferenceWintsch, R. P., R. Christoffersen, and A. K. Kronenberg ( 1995 ), Fluid‐rock reaction weakening of fault zones, J. Geophys. Res., 100, 13,021 – 13,032, doi: 10.1029/94JB02622.en_US
dc.identifier.citedreferenceZoback, M. D., et al. ( 1987 ), New evidence on the state of stress of the San Andreas Fault system, Science, 238, 1105 – 1111.en_US
dc.identifier.citedreferenceAharonov, E., and R. Katsman ( 2009 ), Interaction between pressure solution and clays in stylolite development: Insights from modeling, Am. J. Sci., 309, 607 – 632, doi: 10.2475/07.2009.04.en_US
dc.identifier.citedreferenceAlvarez, W., T. Engelder, and P. A. Geiser ( 1978 ), Classification of solution cleavage in pelagic limestones, Geology, 6, 263 – 266.en_US
dc.identifier.citedreferenceBaird, G. B., and P. J. Hudleston ( 2007 ), Modeling the influence of tectonic extrusion and volume loss on the geometry, displacement, vorticity, and strain compatibility of ductile shear zones, J. Struct. Geol., 29, 1665 – 1678, doi: 10.1016/j.jsg.2007.06.012.en_US
dc.identifier.citedreferenceBaumgartner, L. P., and S. N. Olsen ( 1995 ), A least‐squares approach to mass transport calculations using the isocon method, Econ. Geol., 90, 1261 – 1270.en_US
dc.identifier.citedreferenceBerthé, D., P. Choukroune, and P. Jegouzo ( 1979 ), Orthogneiss, mylonite and non coaxial deformation of granites: The example of the South Armorican Shear Zone, J. Struct. Geol., 1, 31 – 42, doi: 10.1016/0191-8141(79)90019-1.en_US
dc.identifier.citedreferenceBos, B., and C. J. Spiers ( 2001 ), Experimental investigation into the microstructural and mechanical evolution of phyllosilicate‐bearing fault rock under conditions favouring pressure solution, J. Struct. Geol., 23, 1187 – 1202, doi: 10.1016/S0191-8141(00)00184-X.en_US
dc.identifier.citedreferenceBos, B., C. J. Peach, and C. J. Spiers ( 2000 ), Frictional‐viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution, Tectonophysics, 327, 173 – 194, doi: 10.1016/S0040-1951(00)00168-2.en_US
dc.identifier.citedreferenceBrantley, S. L. ( 1992 ), The effect of fluid chemistry on quartz microcrack lifetimes, Earth Planet. Sci. Lett., 113, 145 – 156, doi: 10.1016/0012-821X(92)90216-I.en_US
dc.identifier.citedreferenceBuatier, M., B. Lacroix, P. Labaume, V. Moutarlier, D. Charpentier, J. P. Sizun, and A. Travé ( 2012 ), Microtextural investigation (SEM and TEM study) of phyllosilicates in a major thrust fault zone (Monte Perdido, southern Pyrenees): Impact on fault reactivation, Swiss J. Geosci., 105, 313 – 324, doi: 10.1007/s00015-012-0098-0.en_US
dc.identifier.citedreferenceByerlee, J. ( 1978 ), Friction of rocks, Pure Appl. Geophys., 116, 615 – 626.en_US
dc.identifier.citedreferenceCarpenter, B. M., C. Marone, and D. M. Saffer ( 2011 ), Weakness of the San Andreas Fault revealed by samples from the active fault zone, Nat. Geosci., 4, 251 – 254.en_US
dc.identifier.citedreferenceChester, F. M., J. P. Evans, and R. L. Biegel ( 1993 ), Internal structure and weakening mechanisms of the San Andreas Fault, J. Geophys. Res., 98, 771 – 786, doi: 10.1029/92JB01866.en_US
dc.identifier.citedreferenceCollettini, C., and R. H. Sibson ( 2001 ), Normal faults, normal friction?, Geology, 29, 927 – 930.en_US
dc.identifier.citedreferenceCollettini, C., A. Niemeijer, C. Viti, and C. Marone ( 2009 ), Fault zone fabric and fault weakness, Nature, 462, 907 – 910.en_US
dc.identifier.citedreferenceCollettini, C., A. R. Niemeijer, C. Viti, S. A. F. Smith, and C. Marone ( 2011 ), Fault structure, frictional properties and mixed‐mode fault slip behaviour, Earth Planet. Sci. Lett., 311, 316 – 327, doi: 10.1016/j.epsl.2011.09.020.en_US
dc.identifier.citedreferenceCollettini, C., G. Di Stefano, B. Carpenter, P. Scarlato, T. Tesei, S. Mollo, F. Trippetta, C. Marone, G. Romeo, and L. Chiaraluce ( 2014 ), A novel and versatile apparatus for brittle rock deformation, Int. J. Rock Mech. Min. Sci., 66, 114 – 123.en_US
dc.identifier.citedreferenceCubas, N., J. P. Avouac, P. Souloumiac, and Y. Leroy ( 2013 ), Megathrust friction determined from mechanical analysis of the forearc in the Maule earthquake area, Earth Planet. Sci. Lett., 381, 92 – 103.en_US
dc.identifier.citedreferenceDieterich, J. H. ( 1972 ), Time‐dependent friction in rocks, J. Geophys. Res., 77, 3690 – 3697, doi: 10.1029/JB077i020p03690.en_US
dc.identifier.citedreferenceFagereng, Å. ( 2013 ), On stress and strain in a continuous‐discontinuous shear zone undergoing simple shear and volume loss, J. Struct. Geol., 50, 44 – 53, doi: 10.1016/j.jsg.2012.02.016.en_US
dc.identifier.citedreferenceFagereng, A., F. Remitti, and R. H. Sibson ( 2010 ), Shear veins observed within anisotropic fabric at high angles to the maximum compressive stress, Nat. Geosci., 3, 482 – 485.en_US
dc.identifier.citedreferenceFein, J. B., and J. V. Walther ( 1987 ), Calcite solubility in supercritical CO 2 ‐H 2 O fluids, Geochim. Cosmochim. Acta, 51, 1665 – 1673, doi: 10.1016/0016-7037(87)90346-2.en_US
dc.identifier.citedreferenceGratier, J. P., and J. F. Gamond ( 1990 ), Transition between seismic and aseismic deformation in the upper crust, Geol. Soc. London, Spec. Publ., 54, 461 – 473, doi: 10.1144/GSL.SP.1990.054.01.42.en_US
dc.identifier.citedreferenceGratier, J.‐P., J. Richard, F. Renard, S. Mittempergher, M. L. Doan, G. Di Toro, J. Hadizadeh, and A. M. Boullier ( 2011 ), Aseismic sliding of active faults by pressure solution creep: Evidence from the San Andreas Fault observatory at depth, Geology, 39, 1131 – 1134.en_US
dc.identifier.citedreferenceGratier, J.‐P., D. K. Dysthe, and F. Renard ( 2013 ), Chapter 2: The role of pressure solution creep in the ductility of the Earth's upper crust, in Advances in Geophysics, edited by R. Dmowska, pp. 47 – 179, Elsevier.en_US
dc.identifier.citedreferenceHoldsworth, R. E. ( 2004 ), Weak faults‐rotten cores, Science, 303, 81 – 182.en_US
dc.identifier.citedreferenceHubbert, K., and M. Rubey ( 1959 ), Role of fluid pressure in mechanics of overthrust faulting, Geol. Soc. Am. Bull., 70, 115 – 166, doi: 10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2.en_US
dc.identifier.citedreferenceIkari, M. J., and D. M. Saffer ( 2011 ), Comparison of frictional strength and velocity dependence between fault zones in the Nankai accretionary complex, Geochem. Geophys. Geosyst., 12, Q0AD11, doi: 10.1029/2010GC003442.en_US
dc.identifier.citedreferenceLacroix, B., M. Buatier, P. Labaume, A. Travé, M. Dubois, D. Charpentier, S. Ventalon, and D. Convert‐Gaubier ( 2011 ), Microtectonic and geochemical characterization of thrusting in a foreland basin: Example of the South‐Pyrenean orogenic wedge (Spain), J. Struct. Geol., 33, 1359 – 1377.en_US
dc.identifier.citedreferenceLacroix, B., D. Charpentier, M. Buatier, T. Vennemann, P. Labaume, T. Adatte, A. Travé, and M. Dubois ( 2012 ), Formation of chlorite during thrust fault reactivation. Record of fluid origin and P–T conditions in the Monte Perdido thrust fault (southern Pyrenees), Contrib. Mineral. Petrol., 163, 1083 – 1102.en_US
dc.identifier.citedreferenceLahfid, A., O. Beyssac, E. Deville, F. Negro, C. Chopin, and B. Goffé ( 2010 ), Evolution of the Raman spectrum of carbonaceous material in low‐grade metasediments of the Glarus Alps (Switzerland), Terra Nova, 22, 354 – 360, doi: 10.1111/j.1365-3121.2010.00956.x.en_US
dc.identifier.citedreferenceLockner, D. A., C. Morrow, D. Moore, and S. Hickman ( 2011 ), Low strength of deep San Andreas Fault gouge from SAFOD core, Nature, 472, 82 – 85.en_US
dc.identifier.citedreferenceMarone, C. ( 1998 ), Laboratory‐derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 643 – 696.en_US
dc.identifier.citedreferenceMassironi, M., A. Bistacchi, and L. Menegon ( 2011 ), Misoriented faults in exhumed metamorphic complexes: Rule or exception?, Earth Planet. Sci. Lett., 307, 233 – 239, doi: 10.1016/j.epsl.2011.04.041.en_US
dc.identifier.citedreferenceMeere, P. A., K. F. Mulchrone, and M. Timmerman ( 2013 ), Shear folding in low‐grade metasedimentary rocks: Reverse shear along cleavage at a high angle to the maximum compressive stress, Geology, 41, 879 – 882, doi: 10.1130/G34150.1.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.