Show simple item record

Structural Brain Changes in Early‐Onset Alzheimer's Disease Subjects Using the LONI Pipeline Environment

dc.contributor.authorMoon, Seok Wooen_US
dc.contributor.authorDinov, Ivo D.en_US
dc.contributor.authorHobel, Samen_US
dc.contributor.authorZamanyan, Alenen_US
dc.contributor.authorChoi, Young Chilen_US
dc.contributor.authorShi, Ranen_US
dc.contributor.authorThompson, Paul M.en_US
dc.contributor.authorToga, Arthur W.en_US
dc.date.accessioned2015-09-01T19:30:23Z
dc.date.available2016-10-10T14:50:23Zen
dc.date.issued2015-09en_US
dc.identifier.citationMoon, Seok Woo; Dinov, Ivo D.; Hobel, Sam; Zamanyan, Alen; Choi, Young Chil; Shi, Ran; Thompson, Paul M.; Toga, Arthur W. (2015). "Structural Brain Changes in Early‐Onset Alzheimer's Disease Subjects Using the LONI Pipeline Environment." Journal of Neuroimaging 25(5): 728-737.en_US
dc.identifier.issn1051-2284en_US
dc.identifier.issn1552-6569en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113121
dc.description.abstractBACKGROUND AND PURPOSEThis study investigates 36 subjects aged 55‐65 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to expand our knowledge of early‐onset (EO) Alzheimer's Disease (EO‐AD) using neuroimaging biomarkers.METHODSNine of the subjects had EO‐AD, and 27 had EO mild cognitive impairment (EO‐MCI). The structural ADNI data were parcellated using BrainParser, and the 15 most discriminating neuroimaging markers between the two cohorts were extracted using the Global Shape Analysis (GSA) Pipeline workflow. Then the Local Shape Analysis (LSA) Pipeline workflow was used to conduct local (per‐vertex) post‐hoc statistical analyses of the shape differences based on the participants’ diagnoses (EO‐MCI+EO‐AD). Tensor‐based Morphometry (TBM) and multivariate regression models were used to identify the significance of the structural brain differences based on the participants’ diagnoses.RESULTSThe significant between‐group regional differences using GSA were found in 15 neuroimaging markers. The results of the LSA analysis workflow were based on the subject diagnosis, age, years of education, apolipoprotein E (ε4), Mini‐Mental State Examination, visiting times, and logical memory as regressors. All the variables had significant effects on the regional shape measures. Some of these effects survived the false discovery rate (FDR) correction. Similarly, the TBM analysis showed significant effects on the Jacobian displacement vector fields, but these effects were reduced after FDR correction.CONCLUSIONSThese results may explain some of the differences between EO‐AD and EO‐MCI, and some of the characteristics of the EO cognitive impairment subjects.en_US
dc.publisherThe Psychological Corporation. Harcourt Brace Jovanovich, Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherADNIen_US
dc.subject.otherneuroimagingen_US
dc.subject.otherearly‐onseten_US
dc.subject.otherAlzheimer's diseaseen_US
dc.subject.otherbrain mappingen_US
dc.titleStructural Brain Changes in Early‐Onset Alzheimer's Disease Subjects Using the LONI Pipeline Environmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113121/1/jon12252.pdf
dc.identifier.doi10.1111/jon.12252en_US
dc.identifier.sourceJournal of Neuroimagingen_US
dc.identifier.citedreferenceGutman BA, Hua X, Rajagopalan P, et al. Maximizing power to track Alzheimer's disease and MCI progression by LDA‐based weighting of longitudinal ventricular surface features. Neuroimage 2013; 70: 386 ‐ 401.en_US
dc.identifier.citedreferenceMorra JH, Tu Z, Apostolova LG, et al. Automated mapping of hippocampal atrophy in 1‐year repeat MRI data from 490 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls. NeuroImage 2009; 45 ( 1 Suppl ): S3 ‐ 15.en_US
dc.identifier.citedreferenceHo AJ, Hua X, Lee S, et al. Comparing 3 T and 1.5 T MRI for tracking Alzheimer's disease progression with tensor‐based morphometry. Hum Brain Mapp 2010; 31 ( 4 ): 499 ‐ 514.en_US
dc.identifier.citedreferenceShen L, Kim S, Risacher SL, et al. Whole genome association study of brain‐wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort. NeuroImage 2010; 53 ( 3 ): 1051 ‐ 63.en_US
dc.identifier.citedreferenceRisacher SL, Shen L, West JD, et al. Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort. Neurobiol Aging 2010; 31 ( 8 ): 1401 ‐ 18.en_US
dc.identifier.citedreferenceWang Y, Song Y, Rajagopalan P, et al. Surface‐based TBM boosts power to detect disease effects on the brain: An N = 804 ADNI study. Neuroimage 2011; 56 ( 4 ): 1993 ‐ 2010.en_US
dc.identifier.citedreferenceHua X, Gutman B, Boyle CP, et al. Accurate measurement of brain changes in longitudinal MRI scans using tensor‐based morphometry. Neuroimage 2011; 57 ( 1 ): 5 ‐ 14.en_US
dc.identifier.citedreferenceHo AJ, Hua X, Lee S, et al. Comparing 3 T and 1.5 T MRI for tracking Alzheimer's disease progression with tensor‐based morphometry. Hum Brain Mapp 2010; 31 ( 4 ): 499 ‐ 514.en_US
dc.identifier.citedreferenceLepore N, Brun C, Chou YY, et al. Generalized tensor‐based morphometry of HIV/AIDS using multivariate statistics on deformation tensors. IEEE Trans Med Imaging 2008; 27 ( 1 ): 129 ‐ 41.en_US
dc.identifier.citedreferenceChiang M, Leow A, Klunder A, et al. Fluid registration of diffusion tensor images using information theory. IEEE Trans Med Imaging 2008; 27 ( 4 ): 442 ‐ 56.en_US
dc.identifier.citedreferenceMazziotta JTA, Evans A, Fox P, et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 2001; 356 ( 1412 ): 1293 ‐ 322.en_US
dc.identifier.citedreferenceThompson PM, Giedd JN, Woods RP, et al. Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 2000; 404 ( 6774 ): 190 ‐ 3.en_US
dc.identifier.citedreferenceFreeborough PA, Fox NC. Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. J Comput Assist Tomogr 1998; 22 ( 5 ): 838 ‐ 43.en_US
dc.identifier.citedreferenceChung MK, Worsley KJ, Paus T, et al. A unified statistical approach to deformation‐based morphometry. NeuroImage 2001; 14 ( 3 ): 595 ‐ 606.en_US
dc.identifier.citedreferenceRiddle WR, Li R, Fitzpatrick JM, et al. Characterizing changes in MR images with color‐coded Jacobians. Magn Reson Imaging 2004; 22 ( 6 ): 769 ‐ 77.en_US
dc.identifier.citedreferenceChumbley JR, Friston KJ. False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage 2009; 44 ( 1 ): 62 ‐ 70.en_US
dc.identifier.citedreferenceChe A, Cui J, Dinov I. SOCR Analyses: implementation and demonstration of a new graphical statistics educational toolkit. J Stat Softw 2009; 30 ( 3 ): 1 ‐ 19.en_US
dc.identifier.citedreferenceLange KL, Bondi MW, Salmon DP, et al. Decline in verbal memory during preclinical Alzheimer's disease: examination of the effect of APOE genotype. J Int Neuropsychol Soc 2002; 8 ( 7 ): 943 ‐ 55.en_US
dc.identifier.citedreferenceKaras G, Scheltens P, Rombouts S, et al. Precuneus atrophy in early‐onset Alzheimer's disease: a morphometric structural MRI study. Neuroradiology 2007; 49 ( 12 ): 967 ‐ 76.en_US
dc.identifier.citedreferenceMoller C, Vrenken H, Jiskoot L, et al. Different patterns of gray matter atrophy in early‐ and late‐onset Alzheimer's disease. Neurobiol Aging 2013; 34 ( 8 ): 2014 ‐ 22.en_US
dc.identifier.citedreferenceShiino A, Watanabe T, Kitagawa T, et al. Different atrophic patterns in early‐ and late‐onset Alzheimer's disease and evaluation of clinical utility of a method of regional z‐score analysis using voxel‐based morphometry. Dement Geriatr Cogn Disord. 2008; 26 ( 2 ): 175 ‐ 86.en_US
dc.identifier.citedreferenceMueller SG, Schuff N, Raptentsetsang S, et al. Selective effect of Apo e4 on CA3 and dentate in normal aging and Alzheimer's disease using high resolution MRI at 4 T. NeuroImage 2008; 42 ( 1 ): 42 ‐ 8.en_US
dc.identifier.citedreferenceKohler S, Black SE, Sinden M, et al. Memory impairments associated with hippocampal versus parahippocampal‐gyrus atrophy: an MR volumetry study in Alzheimer's disease. Neuropsychologia 1998; 36 ( 9 ): 901 ‐ 14.en_US
dc.identifier.citedreferenceO'Driscoll GA, Florencio PS, Gagnon D, et al. Amygdala‐hippocampal volume and verbal memory in first‐degree relatives of schizophrenic patients. Psychiatry Res 2001; 107 ( 2 ): 75 ‐ 85.en_US
dc.identifier.citedreferenceKramer JH, Schuff N, Reed BR, et al. Hippocampal volume and retention in Alzheimer's disease. J Int Neuropsychol Soc 2004; 10 ( 4 ): 639 ‐ 43.en_US
dc.identifier.citedreferenceSakamoto S, Ishii K, Sasaki M, et al. Differences in cerebral metabolic impairment between early and late onset types of Alzheimer's disease. J Neurol Sci 2002; 200 ( 1‐2 ): 27 ‐ 32.en_US
dc.identifier.citedreferenceScarmeas N, Habeck C, Anderson KE, et al. Altered PET functional brain responses in cognitively intact elderly persons at risk for Alzheimer disease (carriers of the epsilon4 allele). Am J Geriatr Psychiatry 2004; 12 ( 6 ): 596 ‐ 605.en_US
dc.identifier.citedreferenceSelkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001; 81 ( 2 ): 741 ‐ 66.en_US
dc.identifier.citedreferenceMayeux R. Alzheimer's disease: epidemiology. Handb Clin Neurol 2008; 89: 195 ‐ 205.en_US
dc.identifier.citedreferenceGatz M, Reynolds CA, Fratiglioni L, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychia 2006; 63 ( 2 ): 168 ‐ 74.en_US
dc.identifier.citedreferenceErtekin‐Taner N. Genetics of Alzheimer's disease: a centennial review. Neurol Clin 2007; 25 ( 3 ): 611 ‐ 67.en_US
dc.identifier.citedreferenceGoate A, Chartier‐Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991; 349 ( 6311 ): 704 ‐ 6.en_US
dc.identifier.citedreferenceSherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early‐onset familial Alzheimer's disease. Nature 1995; 375 ( 6534 ): 754 ‐ 60.en_US
dc.identifier.citedreferenceLevy‐Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995; 269 ( 5226 ): 973 ‐ 7.en_US
dc.identifier.citedreferenceRogaev EI, Sherrington R, Rogaeva EA, et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 1995; 376 ( 6543 ): 775 ‐ 8.en_US
dc.identifier.citedreferencePericak‐Vance MA, Grubber J, Bailey LR, et al. Identification of novel genes in late‐onset Alzheimer's disease. Exp Gerontol 2000; 35 ( 9‐10 ): 1343 ‐ 52.en_US
dc.identifier.citedreferenceErtekin‐Taner N. Genetics of Alzheimer disease in the pre‐ and post‐GWAS era. Alzheimer's Res Ther 2010; 2 ( 1 ): 3.en_US
dc.identifier.citedreferenceDubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS‐ADRDA criteria. Lancet Neurol 2007; 6 ( 8 ): 734 ‐ 46.en_US
dc.identifier.citedreferenceThompson PM, Hayashi KM, De Zubicaray GI, et al. Mapping hippocampal and ventricular change in Alzheimer disease. NeuroImage 2004; 22 ( 4 ): 1754 ‐ 66.en_US
dc.identifier.citedreferenceJack CR Jr, Slomkowski M, Gracon S, et al. MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 2003; 60 ( 2 ): 253 ‐ 60.en_US
dc.identifier.citedreferenceWolz R, Heckemann RA, Aljabar P, et al. Measurement of hippocampal atrophy using 4D graph‐cut segmentation: application to ADNI. NeuroImage 2010; 52 ( 1 ): 109 ‐ 18.en_US
dc.identifier.citedreferenceMorra JH, Tu Z, Apostolova LG, et al. Automated 3D mapping of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls. Hum Brain Mapp 2009; 30 ( 9 ): 2766 ‐ 88.en_US
dc.identifier.citedreferenceQiu A, Fennema‐Notestine C, Dale AM, et al. Alzheimer's Disease Neuroimaging I. Regional shape abnormalities in mild cognitive impairment and Alzheimer's disease. NeuroImage 2009; 45 ( 3 ): 656 ‐ 61.en_US
dc.identifier.citedreferenceApostolova LG, Thompson PM, Green AE, et al. 3D comparison of low, intermediate, and advanced hippocampal atrophy in MCI. Hum Brain Mapp 2010; 31 ( 5 ): 786 ‐ 97.en_US
dc.identifier.citedreferenceCardenas VA, Chao LL, Studholme C, et al. Brain atrophy associated with baseline and longitudinal measures of cognition. Neurobiol Aging 2011; 32 ( 4 ): 572 ‐ 80.en_US
dc.identifier.citedreferenceHua X, Lee S, Hibar DP, et al. Mapping Alzheimer's disease progression in 1309 MRI scans: power estimates for different inter‐scan intervals. NeuroImage 2010; 51 ( 1 ): 63 ‐ 75.en_US
dc.identifier.citedreferenceChou YY, Lepore N, Saharan P, et al. Ventricular maps in 804 ADNI subjects: correlations with CSF biomarkers and clinical decline. Neurobiol Aging 2010; 31 ( 8 ): 1386 ‐ 400.en_US
dc.identifier.citedreferencePadovani A, Gilberti N, Borroni B. The usefulness of biological and neuroimaging markers for the diagnosis of early‐onset Alzheimer's disease. Int J Alzheimers Dis 2011;2011: 296374.en_US
dc.identifier.citedreferenceFrisoni GB, Pievani M, Testa C, et al. The topography of grey matter involvement in early and late onset Alzheimer's disease. Brain 2007; 130 ( Pt 3 ): 720 ‐ 30.en_US
dc.identifier.citedreferenceHanyu H, Nakano S, Abe S, et al. [Differences of neuroimaging between early‐onset and late‐onset Alzheimer‐type dementia]. Rinsho shinkeigaku = Clinical neurology 1995; 35 ( 10 ): 1104 ‐ 9.en_US
dc.identifier.citedreferencePievani M, Bocchetta M, Boccardi M, et al. Striatal morphology in early‐onset and late‐onset Alzheimer's disease: a preliminary study. Neurobiol Aging 2013; 34 ( 7 ): 1728 ‐ 39.en_US
dc.identifier.citedreferenceFrisoni GB, Testa C, Sabattoli F, et al. Structural correlates of early and late onset Alzheimer's disease: voxel based morphometric study. J Neurol Neurosurg Psychiatry 2005; 76 ( 1 ): 112 ‐ 4.en_US
dc.identifier.citedreferencePetersen RC, Aisen PS, Beckett LA, et al. Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 2010; 74 ( 3 ): 201 ‐ 9.en_US
dc.identifier.citedreferenceMorris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993; 43 ( 11 ): 2412 ‐ 4.en_US
dc.identifier.citedreferenceWechsler D. WMS‐R Wechsler Memory Scale‐Revised Manual. New York: The Psychological Corporation. Harcourt Brace Jovanovich, Inc., 1987.en_US
dc.identifier.citedreferenceMcCulloch CE. Generalized linear mixed models. New Jersey: Wiley Online Library, 2006.en_US
dc.identifier.citedreferenceVerbeke G, Molenberghs G. Linear mixed models for longitudinal data. New York: Springer, 2009.en_US
dc.identifier.citedreferenceJack CR Jr, Bernstein MA, Fox NC, et al. The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 2008; 27 ( 4 ): 685 ‐ 91.en_US
dc.identifier.citedreferenceDale AM, Fischl B, Sereno MI. Cortical surface‐based analysis. I. Segmentation and surface reconstruction. NeuroImage 1999; 9 ( 2 ): 179 ‐ 94.en_US
dc.identifier.citedreferenceFischl B, Sereno MI, Dale AM. Cortical surface‐based analysis. II: Inflation, flattening, and a surface‐based coordinate system. NeuroImage 1999; 9 ( 2 ): 195 ‐ 207.en_US
dc.identifier.citedreferenceDesikan RS, Cabral HJ, Fischl B, et al. Temporoparietal MR imaging measures of atrophy in subjects with mild cognitive impairment that predict subsequent diagnosis of Alzheimer disease. AJNR Am J Neuroradiol 2009; 30 ( 3 ): 532 ‐ 8.en_US
dc.identifier.citedreferenceFischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U. S. A. 2000; 97 ( 20 ): 11050 ‐ 5.en_US
dc.identifier.citedreferenceDinov I, Lozev K, Petrosyan P, et al. Neuroimaging study designs, computational analyses and data provenance using the LONI pipeline. PLoS One 2010; 5 ( 9 ): e13070. doi:13010.1137/journal.pone.0013070x.en_US
dc.identifier.citedreferenceSmith SM. Fast robust automated brain extraction. Hum. Brain Mapp. 2002; 17 ( 3 ): 143 ‐ 55.en_US
dc.identifier.citedreferencePieper S, Lorensen B, Schroeder W, et al. The NA‐MIC Kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. Paper presented at: Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on; 6–9 April, 2006.en_US
dc.identifier.citedreferenceTu Z, Narr KL, Dinov I, et al. Brain anatomical structure segmentation by hybrid discriminative/generative models. IEEE Trans Med Imaging 2008; 27 ( 4 ): 495 ‐ 508.en_US
dc.identifier.citedreferenceShattuck DW, Mirza M, Adisetiyo V, et al. Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 2008; 39 ( 3 ): 1064 ‐ 80.en_US
dc.identifier.citedreferenceTerzopoulos D. The computation of visible‐surface representations. IEEE Trans Pattern Anal Mach Intell 1988; 10 ( 4 ): 417 ‐ 38.en_US
dc.identifier.citedreferenceLarson R, Edwards BH. Calculus. Belmont, CA: Brooks/Cole Pub Co, 2009.en_US
dc.identifier.citedreferenceSantaló LA. Integral geometry and geometric probability. Cambridge, UK: Cambridge University Press, 2004.en_US
dc.identifier.citedreferenceDinov I, Torri F, Macciardi F, et al. Applications of the pipeline environment for visual informatics and genomics computations. BMC Bioinformatics 2011; 12 ( 1 ): 304.en_US
dc.identifier.citedreferenceFrisoni GB, Sabattoli F, Lee AD, et al. In vivo neuropathology of the hippocampal formation in AD: a radial mapping MR‐based study. Neuroimage 2006; 32 ( 1 ): 104 ‐ 10.en_US
dc.identifier.citedreferenceApostolova LG, Dinov ID, Dutton RA, et al. 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease. Brain 2006; 129 ( Pt 11 ): 2867 ‐ 73.en_US
dc.identifier.citedreferenceHua X, Leow AD, Parikshak N, et al. Tensor‐based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects. NeuroImage 2008; 43 ( 3 ): 458 ‐ 69.en_US
dc.identifier.citedreferenceWolf H, Grunwald M, Kruggel F, et al. Hippocampal volume discriminates between normal cognition; questionable and mild dementia in the elderly. Neurobiol Aging 2001; 22 ( 2 ): 177 ‐ 86.en_US
dc.identifier.citedreferenceLuders E, Thompson PM, Kurth F, et al. Global and regional alterations of hippocampal anatomy in long‐term meditation practitioners. Hum Brain Mapp 2013;34(12):3369–75. doi: 10.1002/hbm.22153. Epub 2012 Jul 19.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.