Show simple item record

Statistical storm time examination of MLT‐dependent plasmapause location derived from IMAGE EUV

dc.contributor.authorKatus, R. M.en_US
dc.contributor.authorGallagher, D. L.en_US
dc.contributor.authorLiemohn, M. W.en_US
dc.contributor.authorKeesee, A. M.en_US
dc.contributor.authorSarno‐smith, L. K.en_US
dc.date.accessioned2015-09-01T19:30:24Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationKatus, R. M.; Gallagher, D. L.; Liemohn, M. W.; Keesee, A. M.; Sarno‐smith, L. K. (2015). "Statistical storm time examination of MLTâ dependent plasmapause location derived from IMAGE EUV." Journal of Geophysical Research: Space Physics 120(7): 5545-5559.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113122
dc.description.abstractThe location of the outer edge of the plasmasphere (the plasmapause) as a function of geomagnetic storm time is identified and investigated statistically in regard to the solar wind driver. Imager for Magnetopause‐to‐Aurora Global Exploration (IMAGE) extreme ultraviolet (EUV) data are used to create an automated method that locates and extracts the plasmapause. The plasmapause extraction technique searches a set range of possible plasmasphere densities for a maximum gradient. The magnetic local time (MLT)‐dependent plasmapause results are compared to manual extraction results. The plasmapause results from 39 intense storms are examined along a normalized epoch storm timeline to determine the average plasmapause L shell as a function of MLT and storm time. The average extracted plasmapause L shell follows the expected storm time plasmapause behavior. The results show that during the main phase, the plasmapause moves earthward and a plasmaspheric drainage plume forms near dusk and across the dayside during strong convection. During the recovery phase, the plume rejoins the corotationally driven plasma while the average plasmapause location moves farther from the Earth. The results are also examined in terms of the solar wind driver. We find evidence that shows that the different categories of solar wind drivers result in different plasmaspheric configurations. During magnetic cloud‐driven events the plasmaspheric drainage plume appears at the start of the main phase. During sheath‐driven events the plume forms later but typically extends further in MLT.Key PointsDeveloped an automated procedure to extract plasmapause from IMAGE EUV imagesValidate and evaluate results using statistical analysis of 39 intense stormsShow that plasmasphere dynamics vary systematically with CME‐v‐CIR drivingen_US
dc.publisherAGUen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherplasmapauseen_US
dc.subject.othergeomagnetic stormsen_US
dc.subject.otherIMAGE EUV dataen_US
dc.subject.othernormalized superposed epoch analysisen_US
dc.titleStatistical storm time examination of MLT‐dependent plasmapause location derived from IMAGE EUVen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113122/1/jgra51890.pdf
dc.identifier.doi10.1002/2015JA021225en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceMoldwin, M. B., L. Downward, H. K. Rassoul, R. Amin, and R. R. Anderson ( 2002 ), A new model of the location of the plasmapause: CRRES results, J. Geophys. Res., 107 ( A11 ), 1339, doi: 10.1029/2001JA009211.en_US
dc.identifier.citedreferenceLiemohn, M. W., and M. Jazowski ( 2008 ), Ring current simulations of the 90 intense storms during solar cycle 23, J. Geophys. Res., 113, A00A17, doi: 10.1029/2008JA013466.en_US
dc.identifier.citedreferenceLiemohn, M. W., and R. Katus ( 2012 ), Is the storm time response of the inner magnetospheric hot ions universally similar or driver dependent?, J. Geophys. Res., 117, A00L03, doi: 10.1029/2011JA017389.en_US
dc.identifier.citedreferenceLiemohn, M. W., A. J. Ridley, D. L. Gallagher, D. M. Ober, and J. U. Kozyra ( 2004 ), Dependence of plasmaspheric morphology on the electric field description during the recovery phase of the 17 April 2002 magnetic storm, J. Geophys. Res., 109, A03209, doi: 10.1029/2003JA010304.en_US
dc.identifier.citedreferenceLiemohn, M. W., A. J. Ridley, J. U. Kozyra, D. L. Gallagher, M. F. Thomsen, M. G. Henderson, M. H. Denton, P. C. Brandt, and J. Goldstein ( 2006 ), Analyzing electric field morphology through data‐model comparisons of the Geospace Environment Modeling Inner Magnetosphere/Storm Assessment Challenge events, J. Geophys. Res., 111, A11S11, doi: 10.1029/2006JA011700.en_US
dc.identifier.citedreferenceLiemohn, M. W., M. Jazowski, J. U. Kozyra, N. Ganushkina, M. F. Thomsen, and J. E. Borovsky ( 2010 ), CIR vs. CME drivers of the ring current during intense magnetic storms, Proc. R. Soc. London, Ser. A, 466 ( 2123 ), 3305 – 3328, doi: 10.1098/rspa.2010.0075.en_US
dc.identifier.citedreferenceLiemohn, M. W., D. L. De Zeeuw, R. Ilie, and N. Y. Ganushkina ( 2011 ), Deciphering magnetospheric cross‐field currents, Geophys. Res. Lett., 38, L20106, doi: 10.1029/2011GL049611.en_US
dc.identifier.citedreferenceLiemohn, M. W., D. L. De Zeeuw, N. Y. Ganushkina, J. U. Kozyra, and D. T. Welling ( 2013 ), Magnetospheric cross‐field currents during the January 6–7, 2011, high‐speed stream‐driven interval, J. Atmos. Sol. Terr. Phys., 99, 78 – 84, doi: 10.1016/j.jastp.2012.09.007.en_US
dc.identifier.citedreferenceLu, G. ( 2006 ), High‐speed streams, coronal mass ejections, and interplanetary shocks: A comparative study of geoeffectiveness, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, Geophys. Monogr. Ser., vol. 167, edited by B. T. Tsurutani et al., pp. 97, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceLynch, B. J., T. H. Zurbuchen, L. A. Fisk, and S. K. Antiochos ( 2003 ), Internal structure of magnetic clouds: Plasma and composition, J. Geophys. Res., 108 ( A6 ), 1239, doi: 10.1029/2002JA009591.en_US
dc.identifier.citedreferenceMulligan, T., and C. T. Russell ( 1998 ), Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere, Geophys. Res. Lett., 25, 2959 – 2962.en_US
dc.identifier.citedreferenceObana, Y., G. Murakami, I. Yoshikawa, I. R. Mann, P. J. Chi, and M. B. Moldwin ( 2010 ), Conjunction study of plasmapause location using ground‐based magnetometers, IMAGE‐EUV, and Kaguya‐TEX data, J. Geophys. Res., 115, A06208, doi: 10.1029/2009JA014704.en_US
dc.identifier.citedreferenceO'Brien, T. P., and M. B. Moldwin ( 2003 ), Empirical plasmapause models from magnetic indices, Geophys. Res. Lett., 30 ( 4 ), 1152, doi: 10.1029/2002GL016007.en_US
dc.identifier.citedreferenceParks, G. K. ( 1991 ), Physics of Space Plasmas: An Introduction, Addison‐Wesley, Redwood City, Calif.en_US
dc.identifier.citedreferencePulkkinen, T. I., N. Partamies, K. E. J. Huttunen, G. D. Reeves, and H. E. J. Koskinen ( 2007 ), Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions, Geophys. Res. Lett., 34, L02105, doi: 10.1029/2006GL027775.en_US
dc.identifier.citedreferenceRidley, A. J., A. M. Dodger, and M. W. Liemohn ( 2014 ), Exploring the efficacy of different electric field models in driving a model of the plasmasphere, J. Geophys. Res. Space Physics, 119, 4621 – 4638, doi: 10.1002/2014JA019836.en_US
dc.identifier.citedreferenceSandel, B. R., et al. ( 2000 ), The extreme ultraviolet imager investigation for the IMAGE mission, Space Sci. Rev., 91, 197 – 242.en_US
dc.identifier.citedreferenceSandel, B. R., J. Goldstein, D. L. Gallagher, and M. Spasojevic ( 2003 ), Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere, Space Sci. Rev., 109 ( 1–4 ), 25 – 46.en_US
dc.identifier.citedreferenceSpasojević, M., J. Goldstein, D. L. Carpenter, U. S. Inan, B. R. Sandel, M. B. Moldwin, and B. W. Reinisch ( 2003 ), Global response of the plasmasphere to a geomagnetic disturbance, J. Geophys. Res., 108 ( A9 ), 1340, doi: 10.1029/2003JA009987.en_US
dc.identifier.citedreferenceTaylor, J. R., M. Lester, and T. K. Yeoman ( 1998 ), A superposed epoch analysis of geomagnetic storms, Ann. Geophys., 12, 612 – 624, doi: 10.1007/s00585-994-0612-4.en_US
dc.identifier.citedreferenceTurner, N. E., W. D. Cramer, S. K. Earles, and B. A. Emery ( 2009 ), Geoefficiency and energy partitioning in CIR‐driven and CME‐driven storms, J. Atmos. Sol. Terr. Phys., 71, 1023, doi: 10.1016/j.jastp.2008.02.005.en_US
dc.identifier.citedreferenceZhang, J., et al. ( 2007a ), Solar and interplanetary sources of major geomagnetic storms ( Dst  ≤ −100 nT) during 1996–2005, J. Geophys. Res., 112, A10102, doi: 10.1029/2007JA012321.en_US
dc.identifier.citedreferenceZhang, J., et al. ( 2007b ), Correction to “Solar and interplanetary sources of major geomagnetic storms ( Dst  ≤ −100 nT) during 1996–2005”, J. Geophys. Res., 112, A12103, doi: 10.1029/2007JA012891.en_US
dc.identifier.citedreferenceZhang, J.‐C., M. W. Liemohn, J. U. Kozyra, B. J. Lynch, and T. H. Zurbuchen ( 2004 ), A statistical study on the geoeffectiveness of near‐Earth magnetic clouds during high solar activity years, J. Geophys. Res., 109, A09101, doi: 10.1029/2004JA010410.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2006 ), Differences between CME‐driven storms and CIR‐driven storms, J. Geophys. Res., 111, A07S08, doi: 10.1029/2005JA011447.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2008 ), A statistical look at plasmaspheric drainage plumes, J. Geophys. Res., 113, A09221, doi: 10.1029/2007JA012994.en_US
dc.identifier.citedreferenceCarpenter, D. L. ( 1970 ), Whistler evidence of the dynamic behavior of the duskside bulge in the plasmasphere, J. Geophys. Res., 75, 3837 – 3847, doi: 10.1029/JA075i019p03837.en_US
dc.identifier.citedreferenceCarpenter, D. L., and R. R. Anderson ( 1992 ), An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97 ( A2 ), 1097 – 1108, doi: 10.1029/91JA01548.en_US
dc.identifier.citedreferenceCarpenter, D. L., B. L. Giles, C. R. Chappell, P. M. E. Décréau, R. R. Anderson, A. M. Persoon, A. J. Smith, Y. Corcuff, and P. Canu ( 1993 ), Plasmasphere dynamics in the duskside bulge region: A new look at an old topic, J. Geophys. Res., 98 ( A11 ), 19,243 – 19,271, doi: 10.1029/93JA00922.en_US
dc.identifier.citedreferenceCarpenter, L. D., and C. Park ( 1973 ), On what ionospheric workers should know about the plasmapause‐plasmasphere, Rev. Geophys. Space Phys., 11, 133 – 154.en_US
dc.identifier.citedreferenceChappell, C. R. ( 1974 ), Detached plasma regions in the magnetosphere, J. Geophys. Res., 79 ( 13 ), 1861 – 1870, doi: 10.1029/JA079i013p01861.en_US
dc.identifier.citedreferenceChappell, C. R., K. K. Harris, and G. W. Sharp ( 1970 ), A study of the influence of magnetic activity on the location of the plasmapause as measured by OGO 5, J. Geophys. Res., 75 ( 1 ), 50 – 56, doi: 10.1029/JA075i001p00050.en_US
dc.identifier.citedreferenceDenton, M. H., J. E. Borovsky, R. M. Skoug, M. F. Thomsen, B. Lavraud, M. G. Henderson, R. L. McPherron, J. C. Zhang, and M. W. Liemohn ( 2006 ), Geomagnetic storms driven by ICME‐ and CIR‐dominated solar wind, J. Geophys. Res., 111, A07S07, doi: 10.1029/2005JA011436.en_US
dc.identifier.citedreferenceGallagher, D. L., M. L. Adrian, and M. W. Liemohn ( 2005 ), The origin and evolution of deep plasmaspheric notches, J. Geophys. Res., 110, A09201, doi: 10.1029/2004JA010906.en_US
dc.identifier.citedreferenceGoldstein, J., R. W. Spiro, P. H. Reiff, R. A. Wolf, B. R. Sandel, J. W. Freeman, and R. L. Lambour ( 2002 ), IMF-driven overshielding electric field and the origin of the plasmaspheric shoulder of May 24, 2000, Geophys. Res. Lett., 29 ( 16 ), doi: 10.1029/2001GL014534.en_US
dc.identifier.citedreferenceGoldstein, J., M. Spasojević, P. H. Reiff, B. R. Sandel, W. T. Forrester, D. L. Gallagher, and B. W. Reinisch ( 2003 ), Identifying the plasmapause in IMAGE EUV data using IMAGE RPI in situ steep density gradients, J. Geophys. Res., 108 ( A4 ), 1147, doi: 10.1029/2002JA009475.en_US
dc.identifier.citedreferenceGoldstein, J., R. A. Wolf, B. R. Sandel, and P. H. Reiff ( 2004 ), Electric fields deduced from plasmapause motion in IMAGE EUV images, Geophys. Res. Lett., 31, L01801, doi: 10.1029/2003GL018797.en_US
dc.identifier.citedreferenceGrebowsky, J. M. ( 1971 ), Time‐dependent plasmapause motion, J. Geophys. Res., 76 ( 25 ), 6193 – 6197, doi: 10.1029/JA076i025p06193.en_US
dc.identifier.citedreferenceHorwitz, J. L., R. H. Comfort, and C. R. Chappell ( 1990 ), A statistical characterization of plasmasphere density structure and boundary locations, J. Geophys. Res., 95, 7937 – 7947, doi: 10.1029/JA095iA06p07937.en_US
dc.identifier.citedreferenceHuttunen, K. E. J., and H. E. J. Koskinen ( 2004 ), Importance of post‐shock streams and sheath region as drivers of intense magnetospheric storms and high‐latitude activity, Ann. Geophys., 22, 1729 – 1738.en_US
dc.identifier.citedreferenceIlie, R., M. W. Liemohn, M. F. Thomsen, J. E. Borovsky, and J. Zhang ( 2008 ), Influence of epoch time selection on the results of superposed epoch analysis using ACE and MPA data, J. Geophys. Res., 113, A00A14, doi: 10.1029/2008JA013241.en_US
dc.identifier.citedreferenceIlie, R., M. W. Liemohn, and A. Ridley ( 2010a ), The effect of smoothed solar wind inputs on global modeling results, J. Geophys. Res., 115, A01213, doi: 10.1029/2009JA014443.en_US
dc.identifier.citedreferenceIlie, R., M. W. Liemohn, J. U. Kozyra, and J. E. Borovsky ( 2010b ), An investigation of the magnetosphere‐ionosphere response to real and idealized co‐rotating interaction region events through global magnetohydrodynamic simulations, Proc. R. Soc. London, Ser. A, 466 ( 2123 ), 3279 – 3303, doi: 10.1098/rspa.2010.0074.en_US
dc.identifier.citedreferenceJordanova, V. K. ( 2006 ), Modeling the behavior of corotating interaction region driven storms in comparison with coronal mass ejection driven storms, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, Geophys. Monogr. Ser., vol. 167, edited by B. Tsurutani et al., pp. 77 – 84, AGU, Washington, D. C., doi: 10.1029/167GM08.en_US
dc.identifier.citedreferenceJordanova, V. K., H. Matsui, P. A. Puhl‐Quinn, M. F. Thomsen, K. Mursula, and L. Holappa ( 2009 ), Ring current development during high speed streams, J. Atmos. Sol. Terr. Phys., 71, 1093, doi: 10.1016/j.jastp.2008.09.043.en_US
dc.identifier.citedreferenceKatus, R. M., and M. W. Liemohn ( 2013 ), Similarities and differences in low‐ to middle‐latitude geomagnetic indices, J. Geophys. Res. Space Physics, 118, 5149 – 5156, doi: 10.1002/jgra.50501.en_US
dc.identifier.citedreferenceKatus, R. M., M. W. Liemohn, D. L. Gallagher, A. Ridley, and S. Zou ( 2013 ), Evidence for potential and inductive convection during intense geomagnetic events using normalized superposed epoch analysis, J. Geophys. Res. Space Physics, 118, 181 – 191, doi: 10.1029/2012JA017915.en_US
dc.identifier.citedreferenceKatus, R. M., M. W. Liemohn, E. L. Ionides, R. Ilie, D. Welling, and L. K. Sarno‐Smith ( 2015 ), Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity, J. Geophys. Res. Space Physics, 120, 310 – 327, doi: 10.1002/2014JA020712.en_US
dc.identifier.citedreferenceKlein, L. W., and L. F. Burlaga ( 1982 ), Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 87 ( A2 ), 613 – 624, doi: 10.1029/JA087iA02p00613.en_US
dc.identifier.citedreferenceLarsen, B. A., D. M. Klumpar, and C. Gurgiolo ( 2007 ), Correlation between plasmapause position and solar wind parameters, J. Atmos. Sol.‐Terr. Phys., 69 ( 3 ), 334 – 340.en_US
dc.identifier.citedreferenceLemaire, J., and K. I. Gringauz ( 1998 ), The Earth's Plasmapause, pp. 350, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceLepping, R. P., et al. ( 1995 ), The Wind magnetic field investigation, Space Sci. Rev., 71, 207 – 229.en_US
dc.identifier.citedreferenceLiemohn, M. W. ( 2006 ), Introduction to special section on “Results of the National Science Foundation Geospace Environment Modeling Inner Magnetosphere/Storms Assessment Challenge”, J. Geophys. Res., 111, A11S01, doi: 10.1029/2006JA011970.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.