Show simple item record

The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding

dc.contributor.authorGuddat, Luke W.en_US
dc.contributor.authorMartin, Jennifer L.en_US
dc.contributor.authorBardwell, James C.A.en_US
dc.contributor.authorZander, Thomasen_US
dc.date.accessioned2015-09-01T19:30:28Z
dc.date.available2015-09-01T19:30:28Z
dc.date.issued1997-06en_US
dc.identifier.citationGuddat, Luke W.; Martin, Jennifer L.; Bardwell, James C.A.; Zander, Thomas (1997). "The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding." Protein Science 6(6): 1148-1156.en_US
dc.identifier.issn0961-8368en_US
dc.identifier.issn1469-896Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113129
dc.description.abstractDsbA is a protein‐folding catalyst from the periplasm of Escherichia coli that interacts with newly translocated polypeptide substrate and catalyzes the formation of disulfide bonds in these secreted proteins. The precise nature of the interaction between DsbA and unfolded substrate is not known. Here, we give a detailed analysis of the DsbA crystal structure, now refined to 1.7 Å, and present a proposal for its interaction with peptide.The crystal structure of DsbA implies flexibility between the thioredoxin and helical domains that may be an important feature for the disulfide transfer reaction. A hinge point for domain motion is identified—the type IV β‐turn Phe 63‐Met 64‐Gly 65‐Gly 66, which connects the two domains.Three unique features on the active site surface of the DsbA molecule—a groove, hydrophobic pocket, and hydrophobic patch—form an extensive uncharged surface surrounding the active‐site disulfide. Residues that contribute to these surface features are shown to be generally conserved in eight DsbA homologues. Furthermore, the residues immediately surrounding the active‐site disulfide are uncharged in all nine DsbA proteins.A model for DsbA‐peptide interaction has been derived from the structure of a human thioredoxin:peptide complex. This shows that peptide could interact with DsbA in a manner similar to that with thioredoxin. The active‐site disulfide and all three surrounding uncharged surface features of DsbA could, in principle, participate in the binding or stabilization of peptide.en_US
dc.publisherCold Spring Harbor Laboratory Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherprotein crystallographyen_US
dc.subject.otheroxidoreductaseen_US
dc.subject.otherDsbAen_US
dc.subject.otherprotein disulfide isomeraseen_US
dc.subject.otherthioredoxin folden_US
dc.subject.otherpeptide interactionen_US
dc.titleThe uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide bindingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biology, University of Michigan, Ann Arbor, Michigan, 48109‐1048en_US
dc.contributor.affiliationotherCentre for Drug Design and Development, University of Queensland, Brisbane, QLD 4072, Australiaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113129/1/5560060603_ftp.pdf
dc.identifier.doi10.1002/pro.5560060603en_US
dc.identifier.sourceProtein Scienceen_US
dc.identifier.citedreferenceNicholls A, Bharadwaj R, Honig B. 1993. GRASP: Graphical representation and analysis of surface properties. Biophysical J 64: A116.en_US
dc.identifier.citedreferenceJeng MF, Holmgren A, Dyson HJ. 1995. Proton sharing between cysteine thiols in Escherichia coli thioredoxin: Implications for the mechanism of protein disulfide reduction. Biochemistry 34: 10101 – 10105.en_US
dc.identifier.citedreferenceJones TA, Zou JY, Cowan SW, Kjeldgaard M. 1991. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47: 110 – 119.en_US
dc.identifier.citedreferenceKleywegt GJ, Jones TA. 1996. Good model‐building and refinement practice. Methods Enzymol. Forthcoming.en_US
dc.identifier.citedreferenceKraulis PJ. 1991. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946 – 950.en_US
dc.identifier.citedreferenceLaskowski RA, MacArthur MW, Moss DS, Thornton JM. 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Crystallogr 26: 283 – 291.en_US
dc.identifier.citedreferenceMartin JL. 1995. Thioredoxin—A fold for all reasons. Structure 3: 245 – 250.en_US
dc.identifier.citedreferenceMartin JL, Bardwell JCA, Kuriyan J. 1993a. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365: 464 – 468.en_US
dc.identifier.citedreferenceMartin JL, Waksman G, Bardwell JCA, Beckwith J, Kuriyan J. 1993b. Crystallization of DsbA, an Escherichia coli protein required for disulphide bond formation in vivo. J Mol Biol 230: 1097 – 1100.en_US
dc.identifier.citedreferenceMissiakas D, Georgopoulos C, Raina S. 1993. Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc Natl Acad Sci USA 90: 7084 – 7088.en_US
dc.identifier.citedreferenceNakai K, Kanehisa M. 1991. Expert system for predicting protein localization sites in Gram‐negative bacteria. Proteins Struct Funct Genet 11: 95 – 110.en_US
dc.identifier.citedreferenceNg TCN, Kwik JF, Maier RJ. 1996. Cloning and expression of the gene for a protein disulfide oxidoreductase from Azotobacter vinelandii: Complementation of an E. coli dsba mutant strain. Gene. Forthcoming.en_US
dc.identifier.citedreferencePeek JA, Taylor RK. 1992. Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc Natl Acad Sci USA 89: 6210 – 6214.en_US
dc.identifier.citedreferenceQin J, Clore GM, Gronenborn AM. 1996a. Ionization equilibria for side‐chain carboxyl groups in oxidized and reduced human thioredoxin and in the complex with its target peptide from the transcription factor NF K B. Biochemistry 35: 7 – 13.en_US
dc.identifier.citedreferenceQin J, Clore GM, Kennedy WP, Kuszewski J, Gronenborn AM. 1996b. The solution structure of human thioredoxin complexed with its target from Ref‐l reveals peptide chain reversal. Structure 4: 613 – 620.en_US
dc.identifier.citedreferenceShevchik VE, Bortoli‐German I, Robert‐Baudouy J, Robinet S, Barras F, Condemine G. 1995. Differential effect of dsbA and dsbC mutations on extracellular enzyme secretion in Erwinia chrysanthemi. Mol Microbiol 16: 745 – 753.en_US
dc.identifier.citedreferenceStanfield RL, Takimoto‐Kamimura M, Rini JM, Profy AT, Wilson IA. 1993. Major antigen‐induced domain rearrangements in an antibody. Structure 1: 83 – 93.en_US
dc.identifier.citedreferenceThompson JD, Higgins DG, Gibson TJ. 1994. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position‐specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673 – 4680.en_US
dc.identifier.citedreferenceTomb JF. 1992. A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd. Proc Natl Acad Sci USA 89: 10252 – 10256.en_US
dc.identifier.citedreferenceWatarai M, Tobe T, Yoshikawa M, Sasakawa C. 1995. Disulfide oxidoreductase activity of Shigella flexneri is required for release of Ipa proteins and invasion of epithelial cells. Proc Natl Acad Sci USA 92: 4927 – 4931.en_US
dc.identifier.citedreferenceWunderlich M, Glockshuber R. 1993a. In vivo control of redox potential during protein folding catalyzed by bacterial protein disulfide isomerase (DsbA). J Biol Chem 268: 24547 – 24550.en_US
dc.identifier.citedreferenceWunderlich M, Glockshuber R. 1993b. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci 2: 717 – 726.en_US
dc.identifier.citedreferenceWunderlich M, Otto A, Seckler R, Glockshuber R. 1993. Bacterial protein disulfide isomerase (DsbA): Efficient catalysis of oxidative protein folding at acidic pH. Biochemistry 32: 12251 – 12256.en_US
dc.identifier.citedreferenceYu J, Webb H, Hurst TR. 1992. A homologue of the Escherichia coli DsbA protein involved in disulphide bond formation is required for the enterotoxin biogenesis in Vibrio cholerae. Mol Microbiol 6: 1949 – 1958.en_US
dc.identifier.citedreferenceZapun A, Cooper L, Creighton TE. 1994. Replacement of the active‐site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33: 1907 – 1914.en_US
dc.identifier.citedreferenceZapun A, Creighton TE. 1994. Effects of DsbA on the disulfide folding of bovine pancreatic trypsin inhibitor and α–lactalbumin. Biochemistry 33: 5202 – 5211.en_US
dc.identifier.citedreferenceBardwell JCA. 1994. Building bridges: Disulfide bond formation in the cell. Mol Microbiol 14: 199 – 205.en_US
dc.identifier.citedreferenceBardwell JCA, Lee JO, Jander G, Martin N, Belin D, Beckwith J. 1993. A pathway for disulfide bond formation in vivo. Proc Natl Acad Sci USA 90: 1038 – 1042.en_US
dc.identifier.citedreferenceBardwell JCA, McGovern K, Beckwith J. 1991. Identification of a protein required for disulfide bond formation in vivo. Cell 67: 581 – 589.en_US
dc.identifier.citedreferenceBernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr., Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M. 1977. The Protein Data Bank: A computer‐based archival file for macromolecular structures. J Mol Biol 112: 535 – 542.en_US
dc.identifier.citedreferenceBrünger AT. 1992a. Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 355: 472 – 475.en_US
dc.identifier.citedreferenceBrünger AT. 1992b. X‐PLOR (version 3.1) manual. New Haven, Connecticut: Yale University.en_US
dc.identifier.citedreferenceDarby NJ, Creighton TE. 1995. Catalytic mechanism of DsbA and its comparison with that of protein disulfide isomerase. Biochemistry 34: 3576 – 3587.en_US
dc.identifier.citedreferenceEngh RA, Huber R. 1991. Accurate bond lengths and angle parameters for X‐ray protein structure refinement. Acta Crystallogr A 47: 392 – 400.en_US
dc.identifier.citedreferenceFrech C, Wunderlich M, Glockshuber R, Schmid FX. 1996. Preferential binding of unfolded protein to DsbA. EMBO J 15: 392 – 398.en_US
dc.identifier.citedreferenceFreedman RB, Hirst TR, Tuite MF. 1994. Protein disulphide isomerase—Building bridges in protein folding. Trends Biochem Sci 19: 331 – 336.en_US
dc.identifier.citedreferenceFriedrich MJ, Kinsey NE, Vila J, Kadner RJ. 1993. Nucleotide sequence of a 13.9 kb segment of the 90 kb virulence plasmid of Salmonella typhimurium: The presence of fimbral biosynthetic genes. Mol Microbiol 8: 543 – 558.en_US
dc.identifier.citedreferenceWilson NA, Barbar E, Fuchs JA, Woodward C. 1995. Aspartic acid 26 in Escherichia coli thioredoxin has a p K a > 9. Biochemistry 34: 8931 – 8939.en_US
dc.identifier.citedreferenceGuilhot C, Jander G, Martin NL, Beckwith J. 1995. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc Nutl Acad Sci USA 92: 9895 – 9899.en_US
dc.identifier.citedreferenceHerron JN, He XM, Ballard DW, Blier PR, Pace PE, Bothwell ALM, Voss EW Jr., Edmundson AB. 1991. An autoantibody to single‐stranded DNA: Comparison of the three‐dimensional structures of the unliganded Fab and a deoxynucleotide‐Fab complex. Proteins Struct Funct Genet 11: 159 – 175.en_US
dc.identifier.citedreferenceHigashi T. 1990. R‐AXIS‐IIC, a program for indexing and processing R‐AXIS IIC imaging plate data. Danvers, Massachusetts: Rigaku.en_US
dc.identifier.citedreferenceHu SH, Peek JA, Rattigan E, Taylor RK, Martin JL. 1997. Structure of TcpG, the DsbA protein folding catalyst from Vibrio cholerae. J Mol Biol 268: 137 – 146.en_US
dc.identifier.citedreferenceHuber R, Epp O, Steigemann W, Formanek H. 1971. The atomic structure of erythrocruorin in the light of the chemical sequence and its comparison with myoglobin. Eur J Biochem 19: 42 – 50.en_US
dc.identifier.citedreferenceHutchinson EG, Thornton JM. 1996. PROMOTIF—A program to identify and analyze structural motifs in proteins. Protein Sci 5: 212 – 220.en_US
dc.identifier.citedreferenceJander G, Martin NL, Beckwith J. 1994. Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. EMBO J 13: 5121 – 5127.en_US
dc.identifier.citedreferenceJeng MF, Dyson HJ. 1996. Direct measurement of the aspartic acid 26 p K a for reduced Escherichia coli thioredoxin by 13C NMR. Biochemistry 35: 1 – 6.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.