Show simple item record

Wave climatology in the Apostle Islands, Lake Superior

dc.contributor.authorAnderson, Joshua D.en_US
dc.contributor.authorWu, Chin H.en_US
dc.contributor.authorSchwab, David J.en_US
dc.date.accessioned2015-09-01T19:30:29Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationAnderson, Joshua D.; Wu, Chin H.; Schwab, David J. (2015). "Wave climatology in the Apostle Islands, Lake Superior." Journal of Geophysical Research: Oceans 120(7): 4869-4890.en_US
dc.identifier.issn2169-9275en_US
dc.identifier.issn2169-9291en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113131
dc.description.abstractThe wave climate of the Apostle Islands in Lake Superior for 35 year (1979–2013) was hindcast and examined using a third‐generation spectral wave model. Wave measurements within the Apostle Islands and offshore NOAA buoys were used to validate the model. Statistics of the significant wave height, peak wave period, and mean wave direction were computed to reveal the spatial variability of wave properties within the archipelago for average and extreme events. Extreme value analysis was performed to estimate the significant wave height at the 1, 10, and 100 year return periods. Significant wave heights in the interior areas of the islands vary spatially but are approximately half those immediately offshore of the islands. Due to reduced winter ice cover and a clockwise shift in wind direction over the hindcast period, long‐term trend analysis indicates an increasing trend of significant wave heights statistics by as much as 2% per year, which is approximately an order of magnitude greater than similar analysis performed in the global ocean for areas unaffected by ice. Two scientific questions related to wave climate are addressed. First, the wave climate change due to the relative role of changing wind fields or ice covers over the past 35 years was revealed. Second, potential bluff erosion affected by the change of wave climate and the trend of lower water levels in the Apostle Islands, Lake Superior was examined.Key Points:Wave climate of the Apostle Islands in Lake Superior for 35 year was hindcastStatistics of the wave climate reveal the spatial variability of wave propertiesAn increasing trend of SWH is found due to climate changeen_US
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherclimate changeen_US
dc.subject.otherbluff erosionen_US
dc.subject.otherGreat Lakesen_US
dc.subject.otherwave modelingen_US
dc.subject.otherwave climateen_US
dc.titleWave climatology in the Apostle Islands, Lake Superioren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113131/1/jgrc21305.pdf
dc.identifier.doi10.1002/2014JC010278en_US
dc.identifier.sourceJournal of Geophysical Research: Oceansen_US
dc.identifier.citedreferenceSchwab, D. J., B. J. Eadie, R. A. Assel, and P. J. Roebber ( 2006 ), Climatology of large sediment resuspension events in southern Lake Michigan, J. Great Lakes Res., 32, 50 – 62, doi: 10.3394/0380-1330(2006)32 [50:COLSRE]2.0.CO;2.en_US
dc.identifier.citedreferenceSaha, S., et al. ( 2010 ), The NCEP climate forecast system reanalysis, Bull. Am. Meteorol. Soc., 91, 1015 – 1057, doi: 10.1175/2010BAMS3001.1.en_US
dc.identifier.citedreferenceSaha, S., et al. ( 2014 ), The NCEP climate forecast system version 2, J. Clim., 27, 2185 – 2208, doi: 10.1175/JCLI-D-12-00823.1.en_US
dc.identifier.citedreferenceSchram, S. T., J. H. Selgeby, C. R. Bronte, and B. L. Swanson ( 1995 ), Population recovery and natural recruitment of lake trout at Gull Island Shoal, Lake Superior, 1964–1992, J. Great Lakes Res., 21, 225 – 232.en_US
dc.identifier.citedreferenceSiadatmousavi, S. M., F. Jose, and G. W. Stone ( 2011 ), The effects of bed friction on wave simulation: Implementation of an unstructured third‐generation wave model, SWAN, J. Coastal Res., 27 ( 1 ), 140 – 152.en_US
dc.identifier.citedreferenceSorensen, R. M. ( 2006 ), Basic Coastal Engineering, 3rd ed., Springer, N. Y.en_US
dc.identifier.citedreferenceSterl, A., and S. Caires ( 2005 ), Climatology, variability and extrema of ocean waves: The web‐based KNMI/ERA‐40 wave atlas, Int. J. Climatol., 25 ( 22 ), 963 – 977, doi: 10.1002/joc.1175.en_US
dc.identifier.citedreferenceStopa, J. E., K. F. Cheung, H. L. Tolman, and A. Chawla ( 2013a ), Patterns and cycles in the Climate Forecast System Reanalysis wind and wave data, Ocean Modell., 70, 207 – 220, doi: 10.1016/j.ocemod.2012.10.005.en_US
dc.identifier.citedreferenceStopa, J. E., J. F. Filipot, N. Li, K. F. Cheung, and Y. L. Chen ( 2013b ), Wave energy resources along the Hawaiian Island chain, Renewable Energy, 55, 305 – 321, doi: 10.1016/j.renene.2012.12.030.en_US
dc.identifier.citedreferenceSWAN Team ( 2013 ), Swan Cycle III Version 40.91A, Scientific and Technical Documentation, Delft Univ. of Technol., Delft, Netherlands.en_US
dc.identifier.citedreferenceSwenson, M. J., C. H. Wu, T. B. Edil, and D. M. Mickelson ( 2006 ), Bluff recession rates and wave impact along the Wisconsin coast of Lake Superior, J. Great Lakes Res., 32, 512 – 530, doi: 10.3394/0380-1330(2006)32[512:BRRAWI]2.0.CO;2.en_US
dc.identifier.citedreferenceThomasen, S., J. Gilbert, and P. Chow‐Fraser ( 2013 ), Wave exposure and hydrologic connectivity create diversity in habitat and zooplankton assemblages at nearshore Long Point Bay, Lake Erie, J. Great Lakes Res., 39, 56 – 65, doi: 10.1016/j.jglr.2012.12.014.en_US
dc.identifier.citedreferenceTuomi, L., K. K. Kahma, and H. Pettersson ( 2011 ), Wave hindcast statistics in the seasonally ice‐covered Baltic Sea, Boreal Environ. Res., 16, 451 – 472.en_US
dc.identifier.citedreferenceTuomi, L., H. Pettersson, C. Fortelius, T. Kimmo, J. V. Bjorkqvist, and K. K. Kahma ( 2014 ), Wave modelling in archipelagos, Coastal Eng., 85, 205 – 220, doi: 10.1016/j.coastaleng.2013.10.011.en_US
dc.identifier.citedreferenceWang, J., X. Bai, H. Hu, A. Clites, M. Colton, and B. Lofgren ( 2012 ), Temporal and spatial variability of Great Lakes ice cover, 1973–2010, J. Clim., 25, 1318 – 1329, doi: 10.1175/2011JCLI4066.1.en_US
dc.identifier.citedreferenceWang, X. L., and V. R. Swail ( 2002 ), Trends of Atlantic wave extremes as simulated in a 40‐year wave hindcast using kinematically reanalyzed wind fields, J. Clim., 15 ( 9 ), 1020 – 1035.en_US
dc.identifier.citedreferenceWaters, R., J. Engstrom, J. Isberg, and M. Leijon ( 2009 ), Wave climate off Swedish west coast, Renewable Energy, 34 ( 6 ), 1600 – 1606, doi: 10.1016/j.renene.2008.11.016.en_US
dc.identifier.citedreferenceWorld Meteorological Organization ( 2007 ), The role of climatological normals in a changing climate, Rep. WCDMP‐61, Geneva, Switzerland.en_US
dc.identifier.citedreferenceWu, C. H., and A. F. Yao ( 2004 ), Laboratory measurements of limiting freak waves on currents, J. Geophys. Res., 109, C12002, doi: 10.1029/2004JC002612.en_US
dc.identifier.citedreferenceWu, C. H., C. C. Young, Q. Chen, and P. J. Lynett ( 2010 ), Efficient nonhydrostatic modeling of surface waves from deep to shallow water, J. Waterw. Port Coastal Ocean Eng., 136 ( 2 ), 104 – 118, doi: 10.1061/_ASCE_WW.1943-5460.0000032.en_US
dc.identifier.citedreferenceYoung, C. C., C. H. Wu, W. C. Liu, and J. T. Kuo ( 2009 ), A higher‐order non‐hydrostatic sigma model for simulating non‐linear refraction‐diffraction of water waves, Coastal Eng., 56 ( 9 ), 919 – 930.en_US
dc.identifier.citedreferenceYuan, H. L., and C. H. Wu ( 2006 ), Fully non‐hydrostatic modeling of surface waves, J. Eng. Mech., 132 ( 4 ), 447 – 456.en_US
dc.identifier.citedreferenceZijlema, M. ( 2010 ), Computation of wind‐wave spectra in coastal waters with SWAN on unstructured grids, Coastal Eng., 57, 267 – 277, doi: 10.1016/j.coastaleng.2009.10.011.en_US
dc.identifier.citedreferenceAarnes, O. J., Ø. Breivik, and M. Reistad ( 2012 ), Wave Extremes in the Northeast Atlantic, J. Clim., 25, 1529 – 1543.en_US
dc.identifier.citedreferenceAlves, J., A. Chawla, H. Tolman, D. Schwab, G. Lang, and G. Mann ( 2014 ), The operational implementation of a Great Lakes wave forecasting system at NOAA/NCEP, Weather Forecasting, 29, 1473 – 1497, doi: 10.1175/WAF-D-12-00049.1.en_US
dc.identifier.citedreferenceAngel, J. R. ( 1995 ), Large‐scale storm damage on the U.S. shores of the Great Lakes, J. of Great Lakes Research, 21 (3), 287 – 293.en_US
dc.identifier.citedreferenceArdhuin, F., and A. Roland ( 2012 ), Coastal wave reflection, directional spread, and seismoacoustic noise sources, J. Geophys. Res., 117, C00J20, doi: 10.1029/2011JC007832.en_US
dc.identifier.citedreferenceAssel, R. A. ( 2003 ), An electronic atlas of Great Lakes ice cover, NOAA Great Lakes Ice Atlas, Great Lakes Environ. Res. Lab., Ann Arbor, Mich. [Available at http://www.glerl.noaa.gov/data/ice/atlas.]en_US
dc.identifier.citedreferenceAssel, R. A. ( 2005 ), Great Lakes weekly ice cover statistics, NOAA Tech. Memo. GLERL‐133, NOAA Great Lakes Environ. Res. Lab., Ann Arbor, Mich.en_US
dc.identifier.citedreferenceAssel, R. A., F. Quinn, and C. Stellinger ( 2004 ), Hydroclimatic factors of the recent record drop in Laurentian Great Lakes water levels, Bull. Am. Meteorol. Soc., 85 ( 8 ), 1143 – 115.en_US
dc.identifier.citedreferenceAustin, J. A., and S. M. Colman ( 2007 ), Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice‐albedo feedback, Geophys. Res. Lett., 34, L06604, doi: 10.1029/2006GL029021.en_US
dc.identifier.citedreferenceBennington, V., G. A. McKinley, N. Kimura, and C. H. Wu ( 2010 ), General circulation of Lake Superior: Mean, variability, and trends from 1979 to 2006, J. Geophys. Res., 115, C12015, doi: 10.1029/2010JC006261.en_US
dc.identifier.citedreferenceBishop, C., and M. Donelan ( 1987 ), Measuring waves with pressure transducers, Coastal Eng., 11 ( 4 ), 309 – 328.en_US
dc.identifier.citedreferenceBooij, N., R. C. Ris, and L. H. Holthuijsen ( 1999 ), A third‐generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res., 104 ( C4 ), 7649 – 7666, doi: 10.1029/98JC02622.en_US
dc.identifier.citedreferenceBrown, E. A., C. H. Wu, D. M. Mickelson, and T. B. Edil ( 2005 ), Factors controlling rates of bluff recession at two sites on Lake Michigan, J. Great Lakes Res., 31 ( 3 ), 306 – 321.en_US
dc.identifier.citedreferenceCaires, S., and A. Sterl ( 2005 ), A new nonparametric method to correct model data: Application to significant wave height from the ERA‐40 re‐analysis, J. Atmos. Oceanic Technol., 22 ( 4 ), 443 – 459, doi: 10.1175/JTECH1707.1.en_US
dc.identifier.citedreferenceCastedo, R., M. Fernandez, A. S. Trendhaile, and C. Paredes ( 2013 ), Modeling cyclic recession of cohesive clay coasts: Effects of wave erosion and bluff stability, Mar. Geol., 335, 162 – 176.en_US
dc.identifier.citedreferenceChawla, A., D. M. Spindler, and H. L. Tolman ( 2013 ), Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds, Ocean Modell., 70, 189 – 206, doi: 10.1016/j.ocemod.2012.07.005.en_US
dc.identifier.citedreferenceChoulakian, V., and M. Stephens ( 2001 ), Goodness‐of‐fit test for the generalized Pareto distribution, Technometrics, 43, 478 – 485, doi: 10.1198/00401700152672573.en_US
dc.identifier.citedreferenceCoberly, C. E., and R. M. Horrall ( 1980 ), Fish spawning grounds in Wisconsin waters of the Great Lakes, Rep. WIS‐SG‐80–235, Univ. of Wis. Sea Grant Inst., Madison, Wis.en_US
dc.identifier.citedreferenceColes, S. ( 2001 ), An Introduction to Statistical Modeling of Extreme Values, Springer, London, U. K.en_US
dc.identifier.citedreferenceDesai, A. R., J. A. Austin, V. Bennington, and G. A. McKinley ( 2009 ), Stronger winds over a large lake in response to weakening air‐to‐lake temperature gradient, Nat. Geosci., 2, 855 – 858, doi: 10.1038/ngeo693.en_US
dc.identifier.citedreferenceDodet, G., X. Bertin, and R. Taborda ( 2010 ), Wave climate variability in the North‐East Atlantic Ocean over the last six decades, Ocean Modell., 31, 120 – 131, doi: 10.1016/j.ocemod.2009.10.010.en_US
dc.identifier.citedreferenceDysthe, K., H. E. Krogstad, and P. Muller ( 2008 ), Oceanic rogue waves, Annu. Rev. Fluid Mech., 40, 287 – 310.en_US
dc.identifier.citedreferenceElgar, S., T. H. C. Herbers, and R. T. Guza ( 1994 ), Reflection of ocean surface gravity waves from a natural beach, J. Phys. Oceanogr., 24 ( 7 ), 1503 – 1511, doi: 10.1175/1520-0485(1994)024 <1503:ROOSGW>2.0.CO;2.en_US
dc.identifier.citedreferenceFitzsimons, J. D., and J. E. Marsden ( 2014 ), Relationship between lake trout spawning, embryonic survival, and currents: A case of bet hedging in the face of environmental stochasticity, J. Great Lakes Res., 40, 92 – 101, doi: 10.1016/j.jglr.2013.12.014.en_US
dc.identifier.citedreferenceGorman, R. M., K. R. Bryan, and A. K. Laing ( 2003 ), Wave hindcast for the New Zealand region: Nearshore validation and coastal wave climate, N. Z. J. Mar. Freshwater Res., 37, 567 – 588.en_US
dc.identifier.citedreferenceGronewold, A. D., V. Fortin, B. Lofgren, A. Clites, C. A. Stow, and F. Quin ( 2013 ), Coasts, water levels, and climate change: A Great Lakes perspective, Clim. Change, 120, 697 – 711.en_US
dc.identifier.citedreferenceHasselmann, K., D. B. Ross, P. Muller, and W. Sell ( 1976 ), A parametric wave prediction model, J. Phys. Oceanogr., 6 ( 2 ), 200 – 228.en_US
dc.identifier.citedreferenceHolthuijsen, L. H., A. Herman, and N. Booij ( 2003 ), Phase‐decoupled refraction–diffraction for spectral wave models, Coastal Eng., 49, 291 – 305, doi: 10.1016/S0378-3839(03)00065-6.en_US
dc.identifier.citedreferenceHowk, F. ( 2009 ), Changes in Lake Superior ice cover at Bayfield, Wisconsin, J. Great Lakes Res., 35, 159 – 162, doi: 10.1016/j.jglr.2008.11.002.en_US
dc.identifier.citedreferenceHubertz, J. M., D. B. Driver, and R. D. Reinhard ( 1991 ), Wind waves on the Great Lakes: A 32 year hindcast, J. Coastal Res., 7, 945 – 967.en_US
dc.identifier.citedreferenceJensen, R. E., M. A. Cialone, R. S. Chapman, B. A. Ebersole, M. Anderson, and L. Thomas ( 2012 ), Lake Michigan storm: Wave and water level modeling, Tech. Rep. ERDC/CHL TR‐12‐26, Coastal and Hydraul. Lab., U.S. Army Eng. Res. and Dev. Cent., Vicksburg, Miss.en_US
dc.identifier.citedreferenceJones, N. L., and S. G. Monismith ( 2007 ), Measuring short‐period wind waves in a tidally forced environment with a subsurface pressure gauge, Limnol. Oceanogr. Methods, 5, 317 – 327.en_US
dc.identifier.citedreferenceKraft, G. J., C. Mechenich, D. J. Mechenich, and S. W. Szczytko ( 2007 ), Assessment of coastal water resources and watershed conditions at Apostle Islands National Lakeshore, Wisconsin, Nat. Resour. Tech. Rep. NPS/NRWRD/NRTR —2007/367, Natl. Park Serv., Fort Collins, Colo. [Available at http://www.nature.nps.gov/water/nrca/assets/docs/apis_coastal.pdf.]en_US
dc.identifier.citedreferenceLin, J. G. ( 2013 ), An improvement of wave refraction‐diffraction effect in SWAN, J. Mar. Sci. Technol., 21 ( 2 ), 198 – 208, doi: 10.6119/JMST-012-1207-1.en_US
dc.identifier.citedreferenceLin, Y. T., and C. H. Wu ( 2014 ), A field study of nearshore environmental changes in response to newly‐built coastal structures in Lake Michigan, J. Great Lakes Res., 40, 102 – 114, doi: 10.1016/j.jg1r.2013.12.013.en_US
dc.identifier.citedreferenceLiu, P.C., and D. B. Ross ( 1980 ), Airborne measurements of wave growth for stable and unstable atmospheres in Lake Michigan, J. Phys. Oceanogr., 10, 1842 – 1853, doi: 10.1175/1520-0485(1980)010 <1842:AMOWGF>2.0.CO;2.en_US
dc.identifier.citedreferenceLiu, P. C., and D. J. Schwab ( 1987 ), A comparison of methods for estimating u * from given u z and air‐sea temperature differences, J. Geophys. Res., 92 ( C6 ), 6488 – 6494, doi: 10.1029/JC092iC06p06488.en_US
dc.identifier.citedreferenceLiu, P. C., D. J. Schwab, and J. R. Bennett ( 1984 ), Comparison of a two‐dimensional wave prediction model with synoptic measurements in Lake Michigan, J. Phys. Oceanogr., 14 ( 9 ), 1514 – 1518, doi: 10.1175/1520-0485(1984)014 <1514:COATDW>2.0.CO;2.en_US
dc.identifier.citedreferenceMcLeod, A. I., K. W. Hipel, and B. A. Bodo ( 1990 ), Trend analysis methodology for water quality time series, Environmetrics, 2, 169 – 200.en_US
dc.identifier.citedreferenceMeadows, G. A., L. A. Meadows, W. L. Wood, J. M. Hubertz, and M. Perlin ( 1997 ), The relationship between great lakes water levels, wave energies, and shoreline damage, Bull. Am. Meteorol. Soc., 78, 675 – 683, doi: 10.1175/1520-0477(1997)078 <0675:TRBGLW>2.0.CO;2.en_US
dc.identifier.citedreferenceMelby, J. ( 2012 ), Wave runup prediction for flood hazard assessment, Rep. ERDC/CHL TR‐12–24, Coastal and Hydraul. Lab., U.S. Army Eng. Res. and Dev. Cent., Vicksburg, Miss.en_US
dc.identifier.citedreferenceNortek AS ( 2005 ), AWAC: Acoustic Wave and Current Meter, User Guide, N3000‐126, Revision E, Norway.en_US
dc.identifier.citedreferenceO'Reilly, W. C., R. T. Guza, and R. J. Seymour ( 1999 ), Wave prediction in the Santa Barbara channel, final technical report, pp. 76–80, Pac. Outer Cont. Shelf Reg., Miner. Manage. Serv., U.S. Dep. of the Interior, Washington, D. C.en_US
dc.identifier.citedreferencePanchang, V., C. K. Jeong, and Z. Demirbilek ( 2013 ), Analyses of extreme wave heights in the Gulf of Mexico for offshore engineering applications, J. Offshore Mech. Arctic Eng., 135 ( 3 ), 031104, doi: 10.1115/1.4023205.en_US
dc.identifier.citedreferencePanchang, V. G., C. Jeong, and D. Li ( 2008 ), Wave climatology in coastal Maine for aquaculture and other applications, Estuaries Coasts, 31 ( 2 ), 289 – 299, doi: 10.1007/s12237-007-9016-5.en_US
dc.identifier.citedreferencePendleton, E. A., E. R. Thieler, and S. J. Williams ( 2007 ), Coastal change‐potential assessment of Sleeping Bear Dunes, Indiana Dunes, and Apostle Islands National Lakeshores to lake‐level changes, 48 pp., U. S. Geol. Surv. Open File Rep., 2005‐1249. [Available at http://pubs.usgs.gov/of/2005/1249/images/pdf/report.pdf.]en_US
dc.identifier.citedreferencePonce de Leon, S., and C. Guedes Soares ( 2010 ), The sheltering effect of the Balearic Islands in the hindcast wave field, Ocean Eng., 37, 603 – 610, doi: 10.1016/j.oceaneng.2010.01.011.en_US
dc.identifier.citedreferenceResio, D. T., and C. L. Vincent ( 1978 ), Design wave information for the Great Lakes, Report 5, Lake Superior, WES Tech. Rep. H‐76‐1, U.S. Army Eng. Waterw. Exp. Stn., Vicksburg, Miss.en_US
dc.identifier.citedreferenceRis, R. C., N. Booij, and L. H. Holthuijsen ( 1999 ), A third‐generation wave model for coastal regions: 2. Verification, J. Geophys. Res., 104 ( C4 ), 7667 – 7681.en_US
dc.identifier.citedreferenceRusu, E., and C. Guedes Soares ( 2012 ), Wave energy pattern around the Madeira Islands, Energy, 45, 771 – 785, doi: 10.1016/j.energy.2012.07.013.en_US
dc.identifier.citedreferenceRusu, E., P. Pilar, and C. Guedes Soares ( 2008 ), Evaluation of the wave conditions in Madeira archipelago with spectral models, Ocean Eng., 35 ( 13 ), 1357 – 1371, doi: 10.1016/j.oceaneng.2008.05.007.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.