Show simple item record

Test–retest reliability of freesurfer measurements within and between sites: Effects of visual approval process

dc.contributor.authorIscan, Zaferen_US
dc.contributor.authorJin, Tony B.en_US
dc.contributor.authorKendrick, Alexandriaen_US
dc.contributor.authorSzeglin, Bryanen_US
dc.contributor.authorLu, Hanzhangen_US
dc.contributor.authorTrivedi, Madhukaren_US
dc.contributor.authorFava, Maurizioen_US
dc.contributor.authorMcGrath, Patrick J.en_US
dc.contributor.authorWeissman, Myrnaen_US
dc.contributor.authorKurian, Benji T.en_US
dc.contributor.authorAdams, Phillipen_US
dc.contributor.authorWeyandt, Sarahen_US
dc.contributor.authorToups, Marisaen_US
dc.contributor.authorCarmody, Thomasen_US
dc.contributor.authorMcInnis, Melvinen_US
dc.contributor.authorCusin, Cristinaen_US
dc.contributor.authorCooper, Crystalen_US
dc.contributor.authorOquendo, Maria A.en_US
dc.contributor.authorParsey, Ramin V.en_US
dc.contributor.authorDeLorenzo, Christineen_US
dc.date.accessioned2015-09-01T19:30:37Z
dc.date.available2016-10-10T14:50:23Zen
dc.date.issued2015-09en_US
dc.identifier.citationIscan, Zafer; Jin, Tony B.; Kendrick, Alexandria; Szeglin, Bryan; Lu, Hanzhang; Trivedi, Madhukar; Fava, Maurizio; McGrath, Patrick J.; Weissman, Myrna; Kurian, Benji T.; Adams, Phillip; Weyandt, Sarah; Toups, Marisa; Carmody, Thomas; McInnis, Melvin; Cusin, Cristina; Cooper, Crystal; Oquendo, Maria A.; Parsey, Ramin V.; DeLorenzo, Christine (2015). "Test–retest reliability of freesurfer measurements within and between sites: Effects of visual approval process." Human Brain Mapping 36(9): 3472-3485.en_US
dc.identifier.issn1065-9471en_US
dc.identifier.issn1097-0193en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113142
dc.description.abstractIn the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated results without performing visual inspection of intermediate processing. In this work, structural MRIs of 40 healthy controls who were scanned twice were used to determine the test–retest reliability of FreeSurfer‐derived cortical measures in four groups of subjects—those 25 that passed visual inspection (approved), those 15 that failed visual inspection (disapproved), a combined group, and a subset of 10 subjects (Travel) whose test and retest scans occurred at different sites. Test–retest correlation (TRC), intraclass correlation coefficient (ICC), and percent difference (PD) were used to measure the reliability in the Destrieux and Desikan–Killiany (DK) atlases. In the approved subjects, reliability of cortical thickness/surface area/volume (DK atlas only) were: TRC (0.82/0.88/0.88), ICC (0.81/0.87/0.88), PD (0.86/1.19/1.39), which represent a significant improvement over these measures when disapproved subjects are included. Travel subjects’ results show that cortical thickness reliability is more sensitive to site differences than the cortical surface area and volume. To determine the effect of visual inspection on sample size required for studies of MRI‐derived cortical thickness, the number of subjects required to show group differences was calculated. Significant differences observed across imaging sites, between visually approved/disapproved subjects, and across regions with different sizes suggest that these measures should be used with caution. Hum Brain Mapp 36:3472–3485, 2015. © 2015 Wiley Periodicals, Inc.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherElsevieren_US
dc.subject.otherFreeSurferen_US
dc.subject.othermultisite MRIen_US
dc.subject.othercerebral cortical thicknessen_US
dc.subject.othercerebral cortical volumeen_US
dc.subject.othercerebral cortical surface areaen_US
dc.subject.othertest–retest reliabilityen_US
dc.titleTest–retest reliability of freesurfer measurements within and between sites: Effects of visual approval processen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelKinesiology and Sportsen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113142/1/hbm22856.pdf
dc.identifier.doi10.1002/hbm.22856en_US
dc.identifier.sourceHuman Brain Mappingen_US
dc.identifier.citedreferenceLyoo CH, Ryu YH, Lee MS ( 2011 ): Cerebral cortical areas in which thickness correlates with severity of motor deficits of Parkinson's disease. J Neurol 258: 1871 – 1876.en_US
dc.identifier.citedreferenceDickerson BC, Fenstermacher E, Salat DH, Wolk DA, Maguire RP, Desikan R, Pacheco J, Quinn BT, Van der Kouwe A, Greve DN, Blacker D, Albert MS, Killiany RJ, Fischl B ( 2008 ): Detection of cortical thickness correlates of cognitive performance: Reliability across MRI scan sessions, scanners, and field strengths. NeuroImage 39: 10 – 18.en_US
dc.identifier.citedreferenceEggert LD, Sommer J, Jansen A, Kircher T, Konrad C ( 2012 ): Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PloS One 7: e45081en_US
dc.identifier.citedreferenceFaul F, Erdfelder E, Lang AG, Buchner A ( 2007 ): G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39: 175 – 191.en_US
dc.identifier.citedreferenceFischl B, Liu A, Dale AM ( 2001 ): Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20: 70 – 80.en_US
dc.identifier.citedreferenceFischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM ( 2002 ): Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33: 341 – 355.en_US
dc.identifier.citedreferenceFischl B, Sereno MI, Dale AM ( 1999 ): Cortical surface‐based analysis. II: Inflation, flattening, and a surface‐based coordinate system. NeuroImage 9: 195 – 207.en_US
dc.identifier.citedreferenceFrodl TS, Koutsouleris N, Bottlender R, Born C, Jager M, Scupin I, Reiser M, Moller HJ, Meisenzahl EM ( 2008 ): Depression‐related variation in brain morphology over 3 years: Effects of stress? Arch Gen Psychiatry 65: 1156 – 1165.en_US
dc.identifier.citedreferenceGholipour A, Kehtarnavaz N, Briggs R, Devous M, Gopinath K ( 2007 ): Brain functional localization: A survey of image registration techniques. IEEE Trans Med Imaging 26: 427 – 451.en_US
dc.identifier.citedreferenceGhosh SS, Kakunoori S, Augustinack J, Nieto‐Castanon A, Kovelman I, Gaab N, Christodoulou JA, Triantafyllou C, Gabrieli JD, Fischl B ( 2010 ): Evaluating the validity of volume‐based and surface‐based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age. NeuroImage 53: 85 – 93.en_US
dc.identifier.citedreferenceGudmundsson S, Runarsson TP, Sigurdsson S ( 2012 ): Test‐retest reliability and feature selection in physiological time series classification. Comput Methods Programs Biomed 105: 50 – 60.en_US
dc.identifier.citedreferenceHaines DE, Ard MD ( 2013 ): Fundamental Neuroscience for Basic and Clinical Applications, with STUDENT CONSULT Online Access,4: Fundamental Neuroscience for Basic and Clinical Applications. Saunders: Elsevier.en_US
dc.identifier.citedreferenceHan X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B ( 2006 ): Reliability of MRI‐derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. NeuroImage 32: 180 – 194.en_US
dc.identifier.citedreferenceHermoye L, Annet L, Lemmerling P, Peeters F, Jamar F, Gianello P, Van Huffel S, Van Beers BE ( 2004 ): Calculation of the renal perfusion and glomerular filtration rate from the renal impulse response obtained with MRI. Magn Reson Med 51: 1017 – 1025.en_US
dc.identifier.citedreferenceHinds O, Polimeni JR, Rajendran N, Balasubramanian M, Amunts K, Zilles K, Schwartz EL, Fischl B, Triantafyllou C ( 2009 ): Locating the functional and anatomical boundaries of human primary visual cortex. NeuroImage 46: 915 – 922.en_US
dc.identifier.citedreferenceHutton C, Draganski B, Ashburner J, Weiskopf N ( 2009 ): A comparison between voxel‐based cortical thickness and voxel‐based morphometry in normal aging. NeuroImage 48: 371 – 380.en_US
dc.identifier.citedreferenceJack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, Whitwell JL, Ward C, Dale AM, Felmlee JP, Gunter JL, Hill DLG, Killiany R, Schuff N, Fox‐Bosetti S, Lin C, Studholme C, DeCarli CS, Krueger G, Ward HA, Metzger GJ, Scott KT, Mallozzi R, Blezek D, Levy J, Debbins JP, Fleisher AS, Albert M, Green R, Bartzokis G, Glover G, Mugler J, Weiner MW ( 2008 ): The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging: JMRI 27: 685 – 691.en_US
dc.identifier.citedreferenceJou RJ, Hardan AY, Keshavan MS ( 2005 ): Reduced cortical folding in individuals at high risk for schizophrenia: A pilot study. Schizophrenia Res 75: 309 – 313.en_US
dc.identifier.citedreferenceJovicich J, Czanner S, Han X, Salat D, van der Kouwe A, Quinn B, Pacheco J, Albert M, Killiany R, Blacker D, Maguire P, Rosas D, Makris N, Gollub R, Dale A, Dickerson BC, Fischl B ( 2009 ): MRI‐derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. NeuroImage 46: 177 – 192.en_US
dc.identifier.citedreferenceJovicich J, Marizzoni M, Sala‐Llonch R, Bosch B, Bartres‐Faz D, Arnold J, Benninghoff J, Wiltfang J, Roccatagliata L, Nobili F, Hensch T, Trankner A, Schonknecht P, Leroy M, Lopes R, Bordet R, Chanoine V, Ranjeva JP, Didic M, Gros‐Dagnac H, Payoux P, Zoccatelli G, Alessandrini F, Beltramello A, Bargallo N, Blin O, Frisoni GB ( 2013 ): Brain morphometry reproducibility in multi‐center 3T MRI studies: A comparison of cross‐sectional and longitudinal segmentations. NeuroImage 83: 472 – 484.en_US
dc.identifier.citedreferenceKhan R, Zhang Q, Darayan S, Dhandapani S, Katyal S, Greene C, Bajaj C, Ress D ( 2011 ): Surface‐based analysis methods for high‐resolution functional magnetic resonance imaging. Graphical Models 73: 313 – 322.en_US
dc.identifier.citedreferenceKlein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV ( 2009 ): Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46: 786 – 802.en_US
dc.identifier.citedreferenceLerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, Hampel H, Evans AC ( 2008 ): Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls. Neurobiol Aging 29: 23 – 30.en_US
dc.identifier.citedreferenceLiem F, Merillat S, Bezzola L, Hirsiger S, Philipp M, Madhyastha T, Jancke L ( 2015 ): Reliability and statistical power analysis of cortical and subcortical FreeSurfer metrics in a large sample of healthy elderly. NeuroImage 108: 95 – 109.en_US
dc.identifier.citedreferenceMills KL, Tamnes CK ( 2014 ): Methods and considerations for longitudinal structural brain imaging analysis across development. Dev Cogn Neurosci 9C: 172 – 190.en_US
dc.identifier.citedreferenceMorelli JN, Runge VM, Ai F, Attenberger U, Vu L, Schmeets SH, Nitz WR, Kirsch JE ( 2011 ): An Image‐based approach to understanding the physics of MR artifacts. RadioGraphics 31: 849 – 866.en_US
dc.identifier.citedreferencePagonabarraga J, Corcuera‐Solano I, Vives‐Gilabert Y, Llebaria G, Garcia‐Sanchez C, Pascual‐Sedano B, Delfino M, Kulisevsky J, Gomez‐Anson B ( 2013 ): Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson's disease. PloS One 8: e54980en_US
dc.identifier.citedreferencePeterson BS, Warner V, Bansal R, Zhu H, Hao X, Liu J, Durkin K, Adams PB, Wickramaratne P, Weissman MM ( 2009 ): Cortical thinning in persons at increased familial risk for major depression. Proc Natl Acad Sci USA 106: 6273 – 6278.en_US
dc.identifier.citedreferenceReuter M, Schmansky NJ, Rosas HD, Fischl B ( 2012 ): Within‐subject template estimation for unbiased longitudinal image analysis. NeuroImage 61: 1402 – 1418.en_US
dc.identifier.citedreferenceRosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, van der Kouwe A, Jenkins BG, Dale AM, Fischl B ( 2002 ): Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology 58: 695 – 701.en_US
dc.identifier.citedreferenceSchnack HG, van Haren NE, Brouwer RM, van Baal GC, Picchioni M, Weisbrod M, Sauer H, Cannon TD, Huttunen M, Lepage C, Collins DL, Evans A, Murray RM, Kahn RS, Hulshoff Pol HE ( 2010 ): Mapping reliability in multicenter MRI: Voxel‐based morphometry and cortical thickness. Hum Brain Mapp 31: 1967 – 1982.en_US
dc.identifier.citedreferenceSereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB ( 1995 ): Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science (New York, N.Y.) 268: 889 – 893.en_US
dc.identifier.citedreferenceStorsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K, Aasland HW, Walhovd KB ( 2014 ): Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change. J Neurosci 34: 8488 – 8498.en_US
dc.identifier.citedreferenceTalairach, J, Tournoux, P. ( 1988 ): Co‐planar Stereotaxic Atlas of the Human Brain: 3‐dimensional Proportional System. Thieme Medical Pub. New York.en_US
dc.identifier.citedreferenceTosun D, Prince JL ( 2008 ): A geometry‐driven optical flow warping for spatial normalization of cortical surfaces. IEEE Trans Med Imaging 27: 1739 – 1753.en_US
dc.identifier.citedreferenceTrivedi, M, McGrath, PJ, Fava, M, Parsey, RV, Toups, M, Kurian, BT, Phillips, ML, Oquendo, M, Bruder, G, Pizzagalli, DA, Weyandt, S, Buckner, R, Adams, P, Carmody, T, Petkova, E, Weissman, MM ( 2013 ): The establishing moderators and biosignatures of antidepressant response for clinical care (EMBARC) study: Rationale, design and progress. Neuropsychopharmacology 38: T179.en_US
dc.identifier.citedreferenceTu PC, Chen LF, Hsieh JC, Bai YM, Li CT, Su TP ( 2012 ): Regional cortical thinning in patients with major depressive disorder: A surface‐based morphometry study. Psychiatry Res 202: 206 – 213.en_US
dc.identifier.citedreferenceTustison, NJ, Cook, PA, Klein, A, Song, G, Das, SR, Duda, JT, Kandel, BM, van Strien, N, Stone, JR, Gee, JC, Avants, BB ( 2014 ): Large‐scale evaluation of ANTs and FreeSurfer cortical thickness measurements. NeuroImage 99: 166 – 179.en_US
dc.identifier.citedreferencevan Eijndhoven P, van Wingen G, Katzenbauer M, Groen W, Tepest R, Fernandez G, Buitelaar J, Tendolkar I ( 2013 ): Paralimbic cortical thickness in first‐episode depression: Evidence for trait‐related differences in mood regulation. Am J Psychiatry 170: 1477 – 1486.en_US
dc.identifier.citedreferenceWinkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, Duggirala R, Glahn DC ( 2010 ): Cortical thickness or grey matter volume? the importance of selecting the phenotype for imaging genetics studies. NeuroImage 53: 1135 – 1146.en_US
dc.identifier.citedreferenceWonderlick JS, Ziegler DA, Hosseini‐Varnamkhasti P, Locascio JJ, Bakkour A, van der Kouwe A, Triantafyllou C, Corkin S, Dickerson BC ( 2009 ): Reliability of MRI‐derived cortical and subcortical morphometric measures: Effects of pulse sequence, voxel geometry, and parallel imaging. NeuroImage 44: 1324 – 1333.en_US
dc.identifier.citedreferenceArdekani BA, Guckemus S, Bachman A, Hoptman MJ, Wojtaszek M, Nierenberg J ( 2005 ): Quantitative comparison of algorithms for inter‐subject registration of 3D volumetric brain MRI scans. J Neurosci Methods 142: 67 – 76.en_US
dc.identifier.citedreferenceBellon E, Haacke E, Coleman P, Sacco D, Steiger D, Gangarosa R ( 1986 ): MR artifacts: A review. Am J Roentgenol 147: 1271 – 1281.en_US
dc.identifier.citedreferenceBremner JD, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S, Staib LH, Charney DS ( 2002 ): Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry 51: 273 – 279.en_US
dc.identifier.citedreferenceCobia DJ, Csernansky JG, Wang L ( 2011 ): Cortical thickness in neuropsychologically near‐normal schizophrenia. Schizophr Res 133: 68 – 76.en_US
dc.identifier.citedreferenceColloby SJ, Firbank MJ, Vasudev A, Parry SW, Thomas AJ, O'Brien JT ( 2011 ): Cortical thickness and VBM‐DARTEL in late‐life depression. J Affect Disorders 133: 158 – 164.en_US
dc.identifier.citedreferenceDale AM, Fischl B, Sereno MI ( 1999 ): Cortical surface‐based analysis. I. Segmentation and surface reconstruction. NeuroImage 9: 179 – 194.en_US
dc.identifier.citedreferenceDavatzikos C, Prince JL, Bryan RN ( 1996 ): Image registration based on boundary mapping. IEEE Trans Med Imaging 15: 112 – 115.en_US
dc.identifier.citedreferenceDesikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT ( 2006a ): An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31: 968 – 980.en_US
dc.identifier.citedreferenceDesikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ ( 2006b ): An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31: 968 – 980.en_US
dc.identifier.citedreferenceDestrieux C, Fischl B, Dale A, Halgren E ( 2010 ): Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53: 1 – 15.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.