Show simple item record

The geographic mosaic of herbicide resistance evolution in the common morning glory, Ipomoea purpurea: Evidence for resistance hotspots and low genetic differentiation across the landscape

dc.contributor.authorKuester, Adamen_US
dc.contributor.authorChang, Shu‐meien_US
dc.contributor.authorBaucom, Regina S.en_US
dc.date.accessioned2015-09-01T19:30:49Z
dc.date.available2016-10-10T14:50:23Zen
dc.date.issued2015-09en_US
dc.identifier.citationKuester, Adam; Chang, Shu‐mei ; Baucom, Regina S. (2015). "The geographic mosaic of herbicide resistance evolution in the common morning glory, Ipomoea purpurea: Evidence for resistance hotspots and low genetic differentiation across the landscape." Evolutionary Applications 8(8): 821-833.en_US
dc.identifier.issn1752-4571en_US
dc.identifier.issn1752-4571en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113156
dc.description.abstractStrong human‐mediated selection via herbicide application in agroecosystems has repeatedly led to the evolution of resistance in weedy plants. Although resistance can occur among separate populations of a species across the landscape, the spatial scale of resistance in many weeds is often left unexamined. We assessed the potential that resistance to the herbicide glyphosate in the agricultural weed Ipomoea purpurea has evolved independently multiple times across its North American range. We examined both adaptive and neutral genetic variations in 44 populations of I. purpurea by pairing a replicated dose–response greenhouse experiment with SSR genotyping of experimental individuals. We uncovered a mosaic pattern of resistance across the landscape, with some populations exhibiting high‐survival postherbicide and other populations showing high death. SSR genotyping revealed little evidence of isolation by distance and very little neutral genetic structure associated with geography. An approximate Bayesian computation (ABC) analysis uncovered evidence for migration and admixture among populations before the widespread use of glyphosate rather than the very recent contemporary gene flow. The pattern of adaptive and neutral genetic variations indicates that resistance in this mixed‐mating weed species appears to have evolved in independent hotspots rather than through transmission of resistance alleles across the landscape.en_US
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othermorning gloryen_US
dc.subject.otherresistanceen_US
dc.subject.otherSSRen_US
dc.subject.otherweeden_US
dc.subject.otherIpomoea purpureaen_US
dc.subject.otherglyphosateen_US
dc.subject.otherapproximate Bayesian computationen_US
dc.titleThe geographic mosaic of herbicide resistance evolution in the common morning glory, Ipomoea purpurea: Evidence for resistance hotspots and low genetic differentiation across the landscapeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113156/1/eva12290_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113156/2/eva12290.pdf
dc.identifier.doi10.1111/eva.12290en_US
dc.identifier.sourceEvolutionary Applicationsen_US
dc.identifier.citedreferencePeakall, R., and P. E. Smouse 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288 – 295.en_US
dc.identifier.citedreferenceOkada, M., B. D. Hanson, K. J. Hembree, Y. Peng, A. Shrestha, C. N. Stewart, S. D. Wright et al. 2013. Evolution and spread of glyphosate resistance in Conyza canadensis in California. Evolutionary Applications 6: 761 – 777.en_US
dc.identifier.citedreferenceOsuna, M., M. Okada, R. Ahmad, A. J. Fischer, and M. Jasieniuk 2011. Genetic diversity and spread of thiobencarb resistant early watergrass ( Echinochloa oryzoides ) in California. Weed Science 59: 195 – 201.en_US
dc.identifier.citedreferenceOwen, M. D., and I. A. Zelaya 2005. Herbicide‐resistant crops and weed resistance to herbicides. Pest Management Science 61: 301 – 311.en_US
dc.identifier.citedreferencePimentel, D., R. Zuniga, and D. Morrison 2005. Update on the environmental and economic costs associated with alien‐invasive species in the United States. Ecological Economics 52: 273 – 288.en_US
dc.identifier.citedreferencePreston, C., and S. B. Powles 2002. Evolution of herbicide resistance in weeds: initial frequency of target site‐based resistance to acetolactate synthase‐inhibiting herbicides in Lolium rigidum. Heredity 88: 8 – 13.en_US
dc.identifier.citedreferencePritchard, J. K., M. Stephens, and P. Donnelly 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945 – 959.en_US
dc.identifier.citedreferenceR Development Core Team. 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (accessed on 12 Feburary 2012).en_US
dc.identifier.citedreferenceRalph, P., and G. Coop 2010. Parallel adaptation: one or many waves of advance of an advantageous allele? Genetics 186: 647 – 668.en_US
dc.identifier.citedreferenceRangel, T., J. A. F. Diniz‐Filho, and L. M. Bini 2010. SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33: 46 – 50.en_US
dc.identifier.citedreferenceRaymond, M., and F. Rousset 1995. Genepop (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248 – 249.en_US
dc.identifier.citedreferenceRitz, C., and J. C. Streibig 2013. Package drc. http://cran.r-project.org/web/packages/drc/drc.pdf (accessed on 21 October 2013).en_US
dc.identifier.citedreferenceRousset, F. 1997. Genetic differentiation and estimation of gene flow from F‐statistics under isolation by distance. Genetics 145: 1219 – 1228.en_US
dc.identifier.citedreferenceRousset, F. 2008. Genepop007: a complete re‐implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8: 103 – 106.en_US
dc.identifier.citedreferenceSada, Y., H. Ikeda, S. Yamato, and S. Kizawa 2013. Characterization of sulfonylurea‐resistant Schoenoplectus juncoides having a target‐site Asp(376) Glu mutation in the acetolactate synthase. Pesticide Biochemistry and Physiology 107: 106 – 111.en_US
dc.identifier.citedreferenceSandermann, H. 2006. Plant biotechnology: ecological case studies on herbicide resistance. Trends in Plant Science 11: 324 – 328.en_US
dc.identifier.citedreferenceSteckel, L., G. N. Rohdes, B. D. Sims, R. M. Hayes, A. McClure, T. C. Mueller, B. Brown et al. 2014. Weed Control Manual for Tennessee. University of Tennessee, Knoxville, TN.en_US
dc.identifier.citedreferenceTallmon, D. A., A. Koyuk, G. Luikart, and M. A. Beaumont 2008. Computer programs: Onesamp: a program to estimate effective population size using approximate Bayesian computation. Molecular Ecology Resources 8: 299 – 301.en_US
dc.identifier.citedreferenceThill, D. C., and C. A. Mallory‐Smith 1997. The nature and consequence of weed spread in cropping systems. Weed Science 45: 337 – 342.en_US
dc.identifier.citedreferenceVan Oosterhout, C., W. F. Hutchinson, D. P. Wills, and P. Shipley 2004. Microchecker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535 – 538.en_US
dc.identifier.citedreferenceVigueira, C., K. Olsen, and A. L. Caicedo 2013. The red queen in the corn: agricultural weeds as models of rapid adaptive evolution. Heredity 110: 303 – 311.en_US
dc.identifier.citedreferenceWebster, T. M., and R. L. Nichols 2012. Changes in the prevalence of weed species in the major agronomic crops of the southern United States: 1994/1995 to 2008/2009. Weed Science 60: 145 – 157.en_US
dc.identifier.citedreferenceWeibull, W. 1951. A statistical distribution function of wide applicability. Journal of Applied Mechanics 18: 293 – 297.en_US
dc.identifier.citedreferenceWeir, B. S., and C. C. Cockerham 1984. Estimating F‐statistics for the analysis of population structure. Evolution 38: 1358 – 1370.en_US
dc.identifier.citedreferenceBates, D. M. 2010. lme4: Mixed‐effects modeling with R. http://lme4.r-forge.r-project.org/book (accessed on 20 October 2013).en_US
dc.identifier.citedreferenceBaucom, R. S., and R. Mauricio. 2004. Fitness costs and benefits of novel herbicide tolerance in a noxious weed. Proceedings of the National Academy of Sciences USA 101: 13386 – 13390.en_US
dc.identifier.citedreferenceBaucom, R. S., and R. Mauricio. 2008. The evolution of novel herbicide tolerance in a noxious weed: the geographic mosaic of selection. Evolutionary Ecology Research 22: 85 – 101.en_US
dc.identifier.citedreferenceBaucom, R. S., and R. Mauricio 2010. Defense against the herbicide RoundUp predates its widespread use. Evolutionary Ecology Research 12: 131.en_US
dc.identifier.citedreferenceBeaumont, M. A. 2010. Approximate Bayesian computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics 41: 379 – 406.en_US
dc.identifier.citedreferenceBeckie, H. J., I. M. Heap, R. J. Smeda, and L. M. Hall 2000. Screening for herbicide resistance in weeds. Weed Technology 14: 428 – 445.en_US
dc.identifier.citedreferenceBeckie, H. J., S. I. Warwick, C. A. Sauder, C. Lozinski, and S. Shirriff 2011. Occurrence and molecular characterization of acetolactate synthase (ALS) inhibitor‐resistant Kochia ( Kochia scoparia ) in western Canada. Weed Technology 25: 170 – 175.en_US
dc.identifier.citedreferenceBernards, M. L., R. J. Crespo, G. R. Kruger, R. Gaussoin, and P. J. Tranel 2012. A waterhemp ( Amaranthus tuberculatus ) population resistant to 2,4‐D. Weed Science 60: 379 – 384.en_US
dc.identifier.citedreferenceBernhardsson, C., K. M. Robinson, I. N. Abreu, S. Jansson, B. R. Albrectsen, and P. Ingvarsson 2013. Geographic structure in metabolome and herbivore community co‐occurs with genetic structure in plant defence genes. Ecology Letters 16: 791 – 798.en_US
dc.identifier.citedreferenceBivand, R. S., E. J. Pebesma, and V. Gomez‐Rubio 2008. Applied Spatial Data Analysis with R. Springer, New York, NY.en_US
dc.identifier.citedreferenceBommarco, R., M. Lann, U. Danzer, K. Polsson, and P. Torstensson 2010. Genetic and phenotypic differences between thistle populations in response to habitat and weed management practices. Biological Journal of the Linnean Society 99: 797 – 807.en_US
dc.identifier.citedreferenceBrodie, E. D., B. Ridenhour, and E. Brodie 2002. The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56: 2067 – 2082.en_US
dc.identifier.citedreferenceCampitelli, B., and J. R. Stinchcombe 2012. Natural selection maintains a single locus leaf shape cline in ivyleaf morning glory, Ipomoea hederacea. Molecular Ecology 22: 552 – 564.en_US
dc.identifier.citedreferenceCampitelli, B., and J. R. Stinchcombe 2014. Population dynamics and evolutionary history of the weedy vine Ipomoea hederacea in North America. Genes Genomic Genetics. 4: 1407 – 1416.en_US
dc.identifier.citedreferenceCanty, A., and B. Ripley 2014. boot: bootstrap R (S‐plus) functions. R package version 1.3‐11. cran.r.project.org/web/packages/boot.html (accessed on 5 November 2014).en_US
dc.identifier.citedreferenceChapuis, M.‐P., and A. Estoup 2007. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24: 621 – 631.en_US
dc.identifier.citedreferenceCornuet, J. M., F. Santos, M. A. Beaumont, C. P. Robert, J. M. Marin, D. J. Balding, and A. Estoup 2008. Inferring population history with DIY ABC: a user‐friendly approach to approximate Bayesian computation. Bioinformatics 24: 2713 – 2719.en_US
dc.identifier.citedreferenceCseh, A., I. Cernak, and J. Taller 2009. Molecular characterization of atrazine resistance in common ragweed ( Ambrosia artemisifolia L.). Journal of Applied Genetics 50: 321 – 327.en_US
dc.identifier.citedreferenceCulpepper, A. S. 2006. Glyphosate‐induced weed shifts 1. Weed Technology 20: 277 – 281.en_US
dc.identifier.citedreferenceDefelice, M. 2001. Tall morning glory, Ipomoea purpurea (L.) Roth – flower or foe? Weed Technology 15: 601 – 606.en_US
dc.identifier.citedreferenceDelye, C., S. Michel, A. Berard, J. Chauvel, D. Brunel, J. P. Guillemin, F. Dessaint et al. 2010. Geographical variation in resistance to acetyl‐coenzyme A carboxylase A inhibiting herbicides across the range of the arable weed Alopecurus myosuroides (blackgrass). New Phytologist 186: 1005 – 1017.en_US
dc.identifier.citedreferenceDelye, C., M. Jasieniuk, and V. Le Corre 2013. Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics 29: 649 – 658.en_US
dc.identifier.citedreferenceDewoody, J., J. D. Nason, and V. D. Hipkins 2006. Mitigating scoring errors in microsatellite data from wild populations. Molecular Ecology Notes 6: 951 – 957.en_US
dc.identifier.citedreferenceDuke, S. O., and S. B. Powles 2008. Glyphosate: a once‐in‐a‐century herbicide. Pest management science. 64: 319 – 325.en_US
dc.identifier.citedreferenceEpperson, B. K., and M. T. Clegg. 1987. Frequency‐dependent variation for outcrossing rate among flower‐color morphs of Ipomoea purpurea. Evolution 41: 1302 – 1311.en_US
dc.identifier.citedreferenceEvanno, G., S. Regnaut, and J. Goudet 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611 – 2620.en_US
dc.identifier.citedreferenceFang, Z., A. M. Gonzales, M. L. Durbin, K. K. Meyer, B. H. Miller, K. M. Volz, M. T. Clegg et al. 2013. Tracing the geographic origins of weedy Ipomoea purpurea in the Southeastern United States. Journal of Heredity 104: 666 – 677.en_US
dc.identifier.citedreferenceGlover, D., M. L. Durbin, G. Huttley, and M. T. Clegg 1996. Genetic diversity in the common morning glory. Plant Species Biology 11: 41 – 50.en_US
dc.identifier.citedreferenceGonzales, A. M., Z. Fang, M. L. Durbin, K. K. T. Meyer, M. T. Clegg, and P. L. Morrell 2012. nucleotide sequence diversity of floral pigment genes in Mexican populations of Ipomoea purpurea (morning glory) accord with a neutral model of evolution. Journal of Heredity 103: 863 – 872.en_US
dc.identifier.citedreferenceGonzalez, A., O. Ronce, R. Ferriere, and M. E. Hochberg 2013. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences 368: 20120404.en_US
dc.identifier.citedreferenceGoudet, J. 2001. FSTAT, A Program to Estimate and Test Gene Diversities and Fixation Indices (Version 2.9. 3). http://www2.unil.ch/popgen/softwares/fstat.htm (accessed on 20 June 2013).en_US
dc.identifier.citedreferenceHardy, O. J., and X. Vekemans 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618 – 620.en_US
dc.identifier.citedreferenceHeap, I. M. 2014. The International Survey of Herbicide Resistant Weeds. www.weedscience.com (accessed on 8 January 2014).en_US
dc.identifier.citedreferenceHedrick, P. W., M. E. Ginevan, and E. P. Ewing 1976. Genetic polymorphism in heterogeneous environments. Annual review of Ecology and Systematics 7: 1 – 32.en_US
dc.identifier.citedreferenceJasieniuk, M., A. L. Brule‐Babel, and I. N. Morrison 1996. The evolution and genetics of herbicide resistance in weeds. Weed Science 44: 176 – 193.en_US
dc.identifier.citedreferenceKelly, C., and J. Rice 1990. Monotone smoothing with application to dose‐response curves and the assessment of synergism. Biometrics 42: 805 – 820.en_US
dc.identifier.citedreferenceKilsby, D. C., K. W. Davies, P. J. McClure, C. Adair, and W. A. Anderson 2000. Bacterial thermal death kinetics based on probability distributions: the heat destruction of Clostridium botulinum and Salmonella Bedford. Journal of Food Protection 63: 1197 – 1203.en_US
dc.identifier.citedreferenceKuester, A., J. K. Conner, T. Culley, and R. S. Baucom 2014. How weeds emerge: a taxonomic, phylogenetic, and trait‐based examination using US data. New Phytologist 202: 1055 – 1068.en_US
dc.identifier.citedreferenceLang, Z. F., J. J. Shen, S. Cai, J. Zhang, J. He, and S. P. Li 2011. Expression, characterization, and site‐directed mutation of a multiple herbicide‐resistant acetohydroxyacid synthase (rAHAS) from Pseudomonas sp Lm10. Current Microbiology 63: 145 – 150.en_US
dc.identifier.citedreferenceLoux, M., D. Doohan, A. F. Dobbels, W. G. Johnson, and T. R. Legleiter 2013. Weed Control Guide for Ohio and Indiana. Ohio State University, agcrops.osu.edu/specialists/weeds/specialist-links/2010WeedControlGuide.pdf (accessed on 10 December 2013).en_US
dc.identifier.citedreferenceMarshall, R., and S. R. Moss 2008. Characterisation and molecular basis of ALS inhibitor resistance in the grass weed Alopecurus myosuroides. Weed Research 48: 439 – 447.en_US
dc.identifier.citedreferenceMenchari, Y., C. Delye, and V. Le Corre 2007. Genetic variation and population structure in blackgrass ( Alopecurus myosuroides Huds.), a successful, herbicide‐resistant, annual grass weed of winter cereal fields. Molecular Ecology 16: 3161 – 3172.en_US
dc.identifier.citedreferenceMiller, R. 1981. Simultaneous Statistical Inference. 2nd edn. Springer Verlag, New York, NY.en_US
dc.identifier.citedreferenceMolecular Ecology Resources Primer Development Consortium, Aksoy, S., V.M.F. Almeida‐Val, V.C.R. Azevedo, R.S. Baucom, P. Bazaga, I. B. Beheregaray et al. 2012. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2012‐30 November 2012. Molecular Ecology Resources 13: 341 – 343.en_US
dc.identifier.citedreferenceMonsanto 2012. RoundUp PowerMax Herbicide: Complete directions for use. http://www.cdms.net/LDat/ld8CC010.pdf (accessed on 8 January 2014).en_US
dc.identifier.citedreferenceMopper, S., P. Stiling, K. Landau, D. Simberloff, and P. V. Zandt 2000. Spatiotemporal variation in leafminer population structure and adaptation to individual oak trees. Ecology 81: 1577 – 1587.en_US
dc.identifier.citedreferenceNeve, P., and S. Powles 2005. High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity 95: 485 – 492.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.