Show simple item record

Improving solar wind modeling at Mercury: Incorporating transient solar phenomena into the WSA‐ENLIL model with the Cone extension

dc.contributor.authorDewey, Ryan M.en_US
dc.contributor.authorBaker, Daniel N.en_US
dc.contributor.authorAnderson, Brian J.en_US
dc.contributor.authorBenna, Mehdien_US
dc.contributor.authorJohnson, Catherine L.en_US
dc.contributor.authorKorth, Hajeen_US
dc.contributor.authorGershman, Daniel J.en_US
dc.contributor.authorHo, George C.en_US
dc.contributor.authorMcClintock, William E.en_US
dc.contributor.authorOdstrcil, Dusanen_US
dc.contributor.authorPhilpott, Lydia C.en_US
dc.contributor.authorRaines, Jim M.en_US
dc.contributor.authorSchriver, Daviden_US
dc.contributor.authorSlavin, James A.en_US
dc.contributor.authorSolomon, Sean C.en_US
dc.contributor.authorWinslow, Reka M.en_US
dc.contributor.authorZurbuchen, Thomas H.en_US
dc.date.accessioned2015-09-01T19:30:53Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationDewey, Ryan M.; Baker, Daniel N.; Anderson, Brian J.; Benna, Mehdi; Johnson, Catherine L.; Korth, Haje; Gershman, Daniel J.; Ho, George C.; McClintock, William E.; Odstrcil, Dusan; Philpott, Lydia C.; Raines, Jim M.; Schriver, David; Slavin, James A.; Solomon, Sean C.; Winslow, Reka M.; Zurbuchen, Thomas H. (2015). "Improving solar wind modeling at Mercury: Incorporating transient solar phenomena into the WSA‐ENLIL model with the Cone extension." Journal of Geophysical Research: Space Physics 120(7): 5667-5685.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113162
dc.description.abstractCoronal mass ejections (CMEs) and other transient solar phenomena play important roles in magnetospheric and exospheric dynamics. Although a planet may interact only occasionally with the interplanetary consequences of these events, such transient phenomena can result in departures from the background solar wind that often involve more than an order of magnitude greater ram pressure and interplanetary electric field applied to the planetary magnetosphere. For Mercury, an order of magnitude greater ram pressure combined with high Alfvén speeds and reconnection rates can push the magnetopause essentially to the planet's surface, exposing the surface directly to the solar wind flow. In order to understand how the solar wind interacts with Mercury's magnetosphere and exosphere, previous studies have used the Wang‐Sheeley‐Arge (WSA)‐ENLIL solar wind modeling tool to calculate basic and composite solar wind parameters at Mercury's orbital location. This model forecasts only the background solar wind, however, and does not include major transient events. The Cone extension permits the inclusion of CMEs and related solar wind perturbations and thus enables characterization of the effects of strong solar wind disturbances on the Mercury system. The Cone extension is predicated on the assumption of constant angular and radial velocities of CMEs to integrate these phenomena into the WSA‐ENLIL coupled model. Comparisons of the model results with observations by the MESSENGER spacecraft indicate that the WSA‐ENLIL+Cone model more accurately forecasts total solar wind conditions at Mercury and has greater predictive power for magnetospheric and exospheric processes than the WSA‐ENLIL model alone.Key PointsThe Cone extension to the WSA‐ENLIL modeling tool treats solar wind transientsWe have compared the WSA‐ENLIL+Cone (WEC) model with MESSENGER observationsWEC more accurately forecasts solar wind conditions at Mercury than WSA‐ENLILen_US
dc.publisherAmerican Institute of Physicsen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMESSENGERen_US
dc.titleImproving solar wind modeling at Mercury: Incorporating transient solar phenomena into the WSA‐ENLIL model with the Cone extensionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113162/1/jgra51958.pdf
dc.identifier.doi10.1002/2015JA021194en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferencePizzo, V., G. Millward, A. Parsons, D. Biesecker, S. Hill, and D. Odstrcil ( 2011 ), Wang‐Sheeley‐Arge‐ENLIL cone model transitions to operations, Space Weather, 9, S033004, doi: 10.1029/2011SW000663.en_US
dc.identifier.citedreferenceJohnson, C. L., et al. ( 2012 ), MESSENGER observations of Mercury's magnetic field structure, J. Geophys. Res., 117, E00L14, doi: 10.1029/2012JE004217.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, T. H. Zurbuchen, J. A. Slavin, S. Perri, S. A. Boardsen, D. N. Baker, S. C. Solomon, and R. L. McNutt Jr. ( 2011a ), The interplanetary magnetic field environment at Mercury's orbit, Planet. Space Sci., 59, 2075 – 2085.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, C. L. Johnson, M. E. Purucker, R. M. Winslow, S. C. Solomon, and R. L. McNutt Jr. ( 2011b ), Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, Geophys. Res. Lett., 38, L22201, doi: 10.1029/2011GL049451.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, C. L. Johnson, R. M. Winslow, J. A. Slavin, M. E. Purucker, S. C. Solomon, and R. L. McNutt Jr. ( 2012 ), Characteristics of the plasma distribution in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, Geophys. Res. Lett., 117, A00M07, doi: 10.1029/2012JA018052.en_US
dc.identifier.citedreferenceLe, G., P. J. Chi, X. Blanco‐Cano, S. Boardsen, J. A. Slavin, and B. J. Anderson ( 2013 ), Upstream ultra‐low frequency waves in Mercury's foreshock region: MESSENGER magnetic field observations, J. Geophys. Res. Space Physics, 118, 2809 – 2823, doi: 10.1002/jgra.50342.en_US
dc.identifier.citedreferenceLee, C. O., J. G. Luhmann, D. Odstrcil, P. J. MacNeice, I. de Pater, P. Riley, and C. N. Arge ( 2009 ), The solar wind at 1 AU during the declining phase of solar cycle 23: Comparison of 3D numerical model results with observations, Solar Phys., 254, 115 – 183, doi: 10.1007/s11207-008-9280-y.en_US
dc.identifier.citedreferenceLee, C. O., C. N. Arge, D. Odstrcil, G. Millward, V. Pizzo, J. M. Quinn, and C. J. Henney ( 2013 ), Ensemble modeling of CME propagation, Solar Phys., 285, 349 – 368, doi: 10.1007/s11207-012-9980-1.en_US
dc.identifier.citedreferenceMays, M. L., et al. ( 2015 ), Ensemble modeling of CMEs using the WSA‐ENLIL+Cone model, Solar Phys., doi: 10.1007/s11207-015-0692-1.en_US
dc.identifier.citedreferenceOdstrcil, D. ( 2003 ), Modeling 3‐D solar wind structure, Adv. Space Res., 32, 497 – 506, doi: 10.1016/S0273-1177(03)00332-6.en_US
dc.identifier.citedreferenceOdstrcil, D., V. J. Pizzo, J. A. Linker, P. Riley, R. Lionello, and Z. Mikic ( 2004a ), Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes, J. Atmos. Sol. Terr. Phys., 66, 1311 – 1326, doi: 10.1016/j.jastp.2004a.04.007.en_US
dc.identifier.citedreferenceOdstrcil, D., P. Riley, and X. P. Zhao ( 2004b ), Numerical simulation of the 12 May 1997 interplanetary CME event, J. Geophys. Res., 109, A02116, doi: 10.1029/2003JA010135.en_US
dc.identifier.citedreferenceRaines, J. M., J. A. Slavin, T. H. Zurbuchen, G. Gloeckler, B. J. Anderson, D. N. Baker, H. Korth, S. M. Krimigis, and R. L. McNutt Jr. ( 2011 ), MESSENGER observations of the plasma environment near Mercury, Planet. Space Sci., 59, 2004 – 2015, doi: 10.1016/j.pss.2011.02.004.en_US
dc.identifier.citedreferenceRaines, J. M., et al. ( 2012 ), Distribution and compositional variations of plasma ions in Mercury's space environment: The first three Mercury years of MESSENGER observations, J. Geophys. Res., 118, 1604 – 1619, doi: 10.1029/2012JA018073.en_US
dc.identifier.citedreferenceRouillard, A. P., et al. ( 2009 ), A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft, J. Geophys. Res., 114, A07106, doi: 10.1029/2008JA014034.en_US
dc.identifier.citedreferenceSchatten, K. H., J. M. Wilcox, and N. F. Ness ( 1969 ), A model of interplanetary and coronal magnetic fields, Solar Phys., 6, 442 – 455, doi: 10.1007/BF00146478.en_US
dc.identifier.citedreferenceShue, J.‐H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer ( 1997 ), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497 – 9511, doi: 10.1029/97JA00196.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury's magnetosphere, Science, 324, 606 – 610.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010 ), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665 – 668, doi: 10.1126/science.1188067.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2014 ), MESSENGER observations of Mercury's dayside magnetosphere under extreme solar wind conditions, J. Geophys. Res. Space Physics, 119, 8087 – 8116, doi: 10.1002/2014JA020319.en_US
dc.identifier.citedreferenceSundberg, T., et al. ( 2012 ), MESSENGER observations of depolarization events in Mercury's magnetotail, J. Geophys. Res., 117, A00M03, doi: 10.1029/2012JA017756.en_US
dc.identifier.citedreferenceSundberg, T., S. A. Boardsen, J. A. Slavin, V. M. Uritsky, B. J. Anderson, H. Korth, D. J. Gershman, J. M. Raines, T. H. Zurbuchen, and S. C. Solomon ( 2013 ), Cyclic reformation of a quasi‐parallel bow shock at Mercury: MESSENGER observations, J. Geophys. Res. Space Physics, 118, 6457 – 6464, doi: 10.1002/jgra.50602.en_US
dc.identifier.citedreferenceTaktakishvili, A., A. Pulkkinen, P. MacNeice, M. Kuznetsova, M. Hesse, and D. Odstrcil ( 2011 ), Modeling of coronal mass ejections that caused particularly large geomagnetic storms using ENLIL heliosphere cone model, Space Weather, 9, S06002, doi: 10.1029/2010SW000642.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comp. Phys., 231, 870, doi: 10.1016/j.jcp.2011.02.006.en_US
dc.identifier.citedreferenceVasyliunas, V. M. ( 2013 ), Role of the solar wind in the structure and dynamics of magnetospheres, in Solar Wind 13: Proceedings of the 13th International Solar Wind Conference, edited by G. P. Zank et al., AIP Conference Proceedings, vol. 1539, pp. 376 – 381, American Institute of Physics, Melville, N. Y., doi: 10.1063/1.4811064.en_US
dc.identifier.citedreferenceWang, Y.‐M., and N. R. Sheeley Jr. ( 1992 ), On potential field models of the solar corona, Astrophys. J., 392, 310 – 319.en_US
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 – 2227, doi: 10.1002/jgra.50237.en_US
dc.identifier.citedreferenceXie, H., L. Ofman, and G. Lawrence ( 2004 ), Cone model for halo CMEs: Applications to space weather forecasting, J. Geophys. Res., 109, A03109, doi: 10.1029/2003JA010226.en_US
dc.identifier.citedreferenceZelenyi, L., M. Oka, H. Malova, M. Fujimoto, D. Delcourt, and W. Baumjohann ( 2007 ), Particle acceleration in Mercury's magnetosphere, Space Sci. Rev., 132, 593 – 609, doi: 10.1007/s11214-007-9169-3.en_US
dc.identifier.citedreferenceZhao, X. P., S. P. Plunkett, and W. Liu ( 2002 ), Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model, J. Geophys. Res., 107 ( A8 ), 1223, doi: 10.1029/2001JA009143.en_US
dc.identifier.citedreferenceZurbuchen, T. H., G. Gloeckler, J. C. Cain, S. E. Lasley, and W. Shanks ( 1998 ), A low‐weight plasma instrument to be used in the inner heliosphere, in Conference on Missions to the Sun II, edited by C. M. Korendyke, Proceedings of the Society of Photo‐Optical Instrumentation Engineers, vol. 3442, pp. 217 – 224, Bellingham, Wash.en_US
dc.identifier.citedreferenceAlexeev, I. I., et al. ( 2010 ), Mercury's magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209, 29 – 39, doi: 10.1016/j.icarus.2010.01.024.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, H. Korth, M. E. Purucker, C. L. Johnson, J. A. Slavin, S. C. Solomon, and R. L. McNutt Jr. ( 2008 ), The structure of Mercury's magnetic field from MESSENGER's first flyby, Science, 321, 82 – 85.en_US
dc.identifier.citedreferenceAnderson, B. J., et al. ( 2010 ), The magnetic field of Mercury, Space Sci. Rev., 152, 307 – 339.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, R. M. Winslow, J. E. Borovsky, M. E. Purucker, J. A. Slavin, S. C. Solomon, M. T. Zuber, and R. L. McNutt Jr. ( 2012 ), Low‐degree structure in Mercury's planetary magnetic field, J. Geophys. Res., 117, E00L12, doi: 10.1029/2012JE004159.en_US
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 526.en_US
dc.identifier.citedreferenceArge, C. N., and V. J. Pizzo ( 2000 ), Improvement in the prediction of SW conditions using near‐real‐time solar magnetic field updates, J. Geophys. Res., 105, 10,465 – 10,479, doi: 10.1029/1999JA000262.en_US
dc.identifier.citedreferenceArge, C. N., J. G. Luhmann, D. Odstrcil, C. J. Schrijver, and Y. Li ( 2004 ), Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME, J. Atmos. Sol. Terr. Phys., 66, 1295 – 1309.en_US
dc.identifier.citedreferenceBaker, D. N., T. I. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPherron ( 1996 ), Neutral line model of substorms: Past results and present view, J. Geophys. Res., 101, 12,975 – 13,010, doi: 10.1029/95JA03753.en_US
dc.identifier.citedreferenceBaker, D. N., et al. ( 2009 ), Space environment of Mercury at the time of the first MESSENGER flyby: Solar wind and interplanetary magnetic field modeling of upstream conditions, J. Geophys. Res., 114, A10101, doi: 10.1029/2009JA014287.en_US
dc.identifier.citedreferenceBaker, D. N., et al. ( 2011 ), The space environment of Mercury at the times of the second and third MESSENGER flybys, Planet. Space Sci., 59, 2066 – 2074, doi: 10.1016/j.pss.2011.01.018.en_US
dc.identifier.citedreferenceBaker, D. N., et al. ( 2013 ), Solar wind forcing at Mercury: WSA‐ENLIL model results, J. Geophys. Res. Space Physics, 118, 45 – 57, doi: 10.1029/2012JA018064.en_US
dc.identifier.citedreferenceBelenkaya, E. S., I. I. Alexeev, J. A. Slavin, and M. S. Blokhina ( 2013 ), Influence of the solar wind magnetic field on the Earth and Mercury magnetospheres in the paraboloidal model, Planet. Space Sci., 75, 46 – 55, doi: 10.1016/j.pss.2012.10.013.en_US
dc.identifier.citedreferenceBlomberg, L. G., and J. A. Cumnock ( 2004 ), On electromagnetic phenomena in Mercury's magnetosphere, Adv. Space Res., 33, 2161 – 2165, doi: 10.1016/S0273-1177(03)00449-6.en_US
dc.identifier.citedreferenceBoardsen, S. A., J. A. Slavin, B. J. Anderson, H. Korth, D. Schriver, and S. C. Solomon ( 2012 ), Survey of coherent ~1 Hz waves in Mercury's inner magnetosphere from MESSENGER observations, J. Geophys. Res., 117, A00M05, doi: 10.1029/2012JA017822.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2013 ), Physics‐based solar wind driver functions for the magnetosphere: Combining the reconnection‐coupled MHD generator with the viscous interaction, J. Geophys. Res. Space Physics, 118, 7119 – 7150, doi: 10.1002/jgra.50557.en_US
dc.identifier.citedreferenceDelcourt, D. C., T. E. Moore, S. Orsini, A. Millilo, and J.‐A. Sauvaud ( 2002 ), Centrifugal acceleration of ions near Mercury, Geophys. Res. Lett., 29 ( 12 ), 1591, doi: 10.1029/2001GL013829.en_US
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1002/jgra.50123.en_US
dc.identifier.citedreferenceFeng, X. S., Y. Zhang, W. Sun, M. Dryer, C. D. Fry, and C. S. Deehr ( 2009 ), A practical database method for predicting arrivals of “average” interplanetary shocks at Earth, J. Geophys. Res., 114, A01101, doi: 10.1029/2008JA013499.en_US
dc.identifier.citedreferenceFeng, X., M. Zhang, and Y. Zhou ( 2014 ), A new three‐dimensional solar wind model in spherical coordinates with a six‐component grid, Astrophys. J. Suppl. Ser., 214, doi: 10.1088/0067-0049/214/1/6.en_US
dc.identifier.citedreferenceFisher, R. R., and R. H. Munro ( 1984 ), Coronal transient geometry, 1, The flare‐associated event of 1981 March 25, Astrophys. J., 280, 428 – 439, doi: 10.1086/162009.en_US
dc.identifier.citedreferenceFry, C. D., M. Dryer, Z. Smith, W. Sun, C. S. Deehr, and S.‐I. Akasofu ( 2003 ), Forecasting solar wind structures and shock arrival times using an ensemble of models, J. Geophys. Res., 108 ( A2 ), 1070, doi: 10.1029/2002JA009474.en_US
dc.identifier.citedreferenceGershman, D. J., T. H. Zurbuchen, L. A. Fisk, J. A. Gilbert, J. R. Raines, B. J. Anderson, C. W. Smith, H. Korth, and S. C. Solomon ( 2012 ), Solar wind alpha particles and heavy ions in the inner heliosphere, J. Geophys. Res., 117, A00M02, doi: 10.1029/2012JA017829.en_US
dc.identifier.citedreferenceGoldsten, J. O., et al. ( 2007 ), The MESSENGER Gamma‐Ray and Neutron Spectrometer, Space Sci. Rev., 131, 339 – 391.en_US
dc.identifier.citedreferenceGressl, C., A. M. Veronig, M. Temmer, D. Odstrcil, J. A. Linker, Z. Mikić, and P. Riley ( 2013 ), Comparative study of MHD modeling of the background solar wind, Solar Phys., 289, 1783 – 1801, doi: 10.1007/s11207-013-0421-6.en_US
dc.identifier.citedreferenceHakamada, K., and S.‐I. Akasofu ( 1982 ), Simulation of three‐dimensional solar wind disturbances and resulting geomagnetic storms, Space Sci. Rev., 31, 3 – 70, doi: 10.1007/BF00349000.en_US
dc.identifier.citedreferenceHo, G. C., et al. ( 2011 ), MESSENGER observations of transient bursts of energetic electrons in Mercury's magnetosphere, Science, 333, 1866 – 1868, doi: 10.1126/science.121101.en_US
dc.identifier.citedreferenceHo, G. C., S. M. Krimigis, R. E. Gold, D. N. Baker, B. J. Anderson, H. Korth, J. A. Slavin, R. L. McNutt Jr., and S. C. Solomon ( 2012 ), Spatial distribution and spectral characteristics of energetic electrons in Mercury's magnetosphere, J. Geophys. Res., 117, A00M04, doi: 10.1029/2012JA017983.en_US
dc.identifier.citedreferenceHoward, R. A., D. J. Michels, N. R. Sheeley Jr., and M. J. Koomen ( 1982 ), The observation of a coronal transient directed at Earth, Astrophys. J., 263, L101 – L104, doi: 10.1086/183932.en_US
dc.identifier.citedreferenceJakosky, B. M. ( 2014 ), The MAVEN mission to Mars: Exploring Mars' climate history, in Eighth International Conference on Mars, abstract 1330, Lunar and Planetary Institute, Houston, Tex.en_US
dc.identifier.citedreferenceJian, L. K., C. T. Russell, J. G. Luhmann, P. J. MacNeice, D. Odstrcil, P. Riley, J. A. Linker, R. M. Skoug, and J. T. Steinberg ( 2011 ), Comparison of observations at ACE and Ulysses with ENLIL model results: Stream interaction regions during Carrington rotations 2016–2018, Solar Phys., 273, 179 – 203, doi: 10.1007/s11207-011-9858-7.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.