Show simple item record

Targeting angiogenesis as a therapeutic means to reinforce osteocyte survival and prevent nonunions in the aftermath of radiotherapy

dc.contributor.authorDonneys, Alexisen_US
dc.contributor.authorNelson, Noah S.en_US
dc.contributor.authorPage, Erin E.en_US
dc.contributor.authorDeshpande, Sagar S.en_US
dc.contributor.authorFelice, Peter A.en_US
dc.contributor.authorTchanque–fossuo, Catherine N.en_US
dc.contributor.authorSpiegel, Joshua P.en_US
dc.contributor.authorBuchman, Steven R.en_US
dc.date.accessioned2015-09-01T19:30:55Z
dc.date.available2016-10-10T14:50:23Zen
dc.date.issued2015-09en_US
dc.identifier.citationDonneys, Alexis; Nelson, Noah S.; Page, Erin E.; Deshpande, Sagar S.; Felice, Peter A.; Tchanque–fossuo, Catherine N. ; Spiegel, Joshua P.; Buchman, Steven R. (2015). "Targeting angiogenesis as a therapeutic means to reinforce osteocyte survival and prevent nonunions in the aftermath of radiotherapy." Head & Neck 37(9): 1261-1267.en_US
dc.identifier.issn1043-3074en_US
dc.identifier.issn1097-0347en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113164
dc.description.abstractBackgroundRadiotherapy (XRT) exerts detrimental collateral effects on bone tissue through mechanisms of vascular damage and impediments to osteocytes, ultimately predisposing patients to the debilitating problems of late pathologic fractures and nonunions. We posit that angiogenic therapy will reverse these pathologic effects in a rat model of radiated fracture healing.MethodsThree groups of rats underwent mandibular osteotomy. Radiated groups received a fractionated 35‐Gy dose before surgery. The deferoxamine (DFO) group received local injections postoperatively. A 40‐day healing period was allowed before histology. Analysis of variance (ANOVA; p < .05) was used for group comparisons.ResultsRadiated fractures revealed a significantly decreased osteocyte count and corresponding increase in empty lacunae when compared to nonradiated fractures (p = .001). With the addition of DFO, these differences were not appreciated. Further, a 42% increase in bony unions was observed after DFO therapy.ConclusionTargeting angiogenesis is a useful means for promoting osteocyte survival and preventing bone pathology after XRT. © 2014 Wiley Periodicals, Inc. Head Neck 37: 1261–1267, 2015en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othermandibleen_US
dc.subject.otherangiogenesisen_US
dc.subject.othernonunionen_US
dc.subject.otherdeferoxamineen_US
dc.subject.otherradiationen_US
dc.titleTargeting angiogenesis as a therapeutic means to reinforce osteocyte survival and prevent nonunions in the aftermath of radiotherapyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOtolaryngologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113164/1/hed23744.pdf
dc.identifier.doi10.1002/hed.23744en_US
dc.identifier.sourceHead & Necken_US
dc.identifier.citedreferenceMonson LA, Farberg A, Jing L, Buchman SR. Human equivalent radiation dose response in the rat mandible. Plast Reconstr Surg 2009; 124: 2.en_US
dc.identifier.citedreferenceAmerican Cancer Society. Cancer Facts and Figures 2013. Available at: http://www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer‐facts‐figures‐2013. Accessed January 1, 2014.en_US
dc.identifier.citedreferenceCohen EE, Lingen MW, Vokes EE. The expanding role of systemic therapy in head and neck cancer. J Clin Oncol 2004; 22: 1743 – 1752.en_US
dc.identifier.citedreferenceYang ES, Murphy BM, Chung CH, et al. Evolution of clinical trials in head and neck cancer. Crit Rev Oncol Hematol 2009; 71: 29 – 42.en_US
dc.identifier.citedreferenceFarberg AS, Jing XL, Monson LA, et al. Deferoxamine reverses radiation induced hypovascularity during bone regeneration and repair in the murine mandible. Bone 2012; 50: 1184 – 1187.en_US
dc.identifier.citedreferenceKarnon JK. Tolley JO, Oyee J, Jewitt K, Ossa D, Akehurst R. Cost‐utility analysis of deferasirox compared to standard therapy with desferrioxamine for patients requiring iron chelation therapy in the United Kingdom. Curr Med Res Opin 2008; 24: 1609 – 1621.en_US
dc.identifier.citedreferenceAlymara V, Bourantas D, Chaidos A, et al. Effectiveness and safety of combined iron‐chelation therapy with deferoxamine and deferiprone. Hematol J 2004; 5: 475 – 479.en_US
dc.identifier.citedreferencePiga A, Galanello R, Forni GL, et al. Randomized phase II trial of deferasirox (Exjade, ICL670), a once‐daily, orally‐administered iron chelator, in comparison to deferoxamine in thalassemia patients with transfusional iron overload. Haematologica 2006; 91: 873 – 880.en_US
dc.identifier.citedreferenceShen X, Wan C, Ramaswamy G, et al. Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice. J Orthop Res 2009; 27: 1298 – 1305.en_US
dc.identifier.citedreferenceBehr B, Sorkin M, Lehnhardt M, Renda A, Longaker MT, Quarto N. A comparative analysis of the osteogenic effects of BMP‐2, FGF‐2, and VEGFA in a calvarial defect model. Tissue Eng Part A 2012; 18: 1079 – 1086.en_US
dc.identifier.citedreferenceSchmitt C, Lutz R, Doering H, Lell M, Ratky J, Schlegel KA. Bio‐Oss ® blocks combined with BMP‐2 and VEGF for the regeneration of bony defects and vertical augmentation. Clin Oral Implants Res 2013; 24: 450 – 460.en_US
dc.identifier.citedreferenceStreet J, Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 2002; 99: 9656 – 9661.en_US
dc.identifier.citedreferenceWan C, Gilbert SR, Wang Y, et al. Activation of the hypoxia‐ inducible factor‐1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci U S A 2008; 105: 686 – 691.en_US
dc.identifier.citedreferenceDonneys A, Weiss DM, Deshpande SS, et al. Localized deferoxamine injection augments vascularity and improves bony union in pathologic fracture healing after radiotherapy. Bone 2013; 52: 318 – 325.en_US
dc.identifier.citedreferenceDonneys A, Deshpande SS, Tchanque–Fossuo CN, et al. Deferoxamine expedites consolidation during mandibular distraction osteogenesis. Bone 2013; 55: 384 – 390.en_US
dc.identifier.citedreferenceTchanque–Fossuo CN, Monson LA, Farberg AS, et al. Dose‐response effect of human equivalent radiation in the murine mandible: part I. A histomorphometric assessment. Plast Reconstr Surg 2011; 128: 114 – 121.en_US
dc.identifier.citedreferenceTchanque–Fossuo CN, Monson LA, Farberg AS, et al. Dose‐response effect of human equivalent radiation in the murine mandible: part II. A biomechanical assessment. Plast Reconstr Surg 2011; 128: 480e – 487e.en_US
dc.identifier.citedreferenceBuchman SR, Ignelzi MA Jr, Radu C, et al. Unique rodent model of distraction osteogenesis of the mandible. Ann Plast Surg 2002; 49: 511 – 519.en_US
dc.identifier.citedreferenceGlowacki J. Angiogenesis in fracture repair. Clin Orthop Relat Res 1998;( 355 Suppl): S82 – S89.en_US
dc.identifier.citedreferenceAbdollahi A, Folkman J. Evading tumor evasion: current concepts and perspectives of anti‐angiogenic cancer therapy. Drug Resist Updat 2010; 13: 16 – 28.en_US
dc.identifier.citedreferenceTugues S, Koch S, Gualandi L, Li X, Claesson–Welsh L. Vascular endothelial growth factors and receptors: anti‐angiogenic therapy in the treatment of cancer. Mol Aspects Med 2011; 32: 88 – 111.en_US
dc.identifier.citedreferenceKulp KS, Vulliet PR. Mimosine blocks cell cycle progression by chelating iron in asynchronous human breast cancer cells. Toxicol Appl Pharmacol 1996; 139: 356 – 364.en_US
dc.identifier.citedreferenceHann HW, Stahlhut MW, Rubin R, Maddrey WC. Antitumor effect of deferoxamine in human hepatocellular carcinoma growing in athymic nude mice. Cancer 1992; 70: 2051 – 2056.en_US
dc.identifier.citedreferenceLee SK, Lee JJ, Lee HJ, et al. Iron chelator‐induced growth arrest and cytochrome c‐dependent apoptosis in immortalized and malignant oral keratinocytes. J Oral Pathol Med 2006; 35: 218 – 226.en_US
dc.identifier.citedreferenceLee SK, Jang HJ, Lee HJ, et al. p38 and ERK MAP kinase mediates iron chelator‐induced apoptosis and ‐suppressed differentiation of immortalized and malignant human oral keratinocytes. Life Sci 2006; 79: 1419 – 1427.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.