Show simple item record

Low Temperature Plasma Etching Control through Ion Energy Angular Distribution and 3-Dimensional Profile Simulation.

dc.contributor.authorZhang, Yitingen_US
dc.date.accessioned2015-09-30T14:23:12Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2015-09-30T14:23:12Z
dc.date.issued2015en_US
dc.date.submitted2015en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113432
dc.description.abstractPlasma etching has become a major part of semiconductor processing because it enables the production of smaller electronics with increased computational power. Plasma etching produces highly anisotropic features, which are needed to maintain feature size critical dimensions (CD) through directional ion wafer bombardment. As the semiconductor industry moves towards smaller feature sizes and higher aspect ratios, a better understanding of ion dynamics and control of the plasma etch processes becomes increasingly necessary. In prior technology nodes, 2-dimensional (2-d) feature profile models served very well to help optimize features and connect reactor scale properties to feature scale CDs. As CDs continue to shrink, the current technology nodes must utilize 3-dimensional (3-d) structures, whose optimization is considerably more difficult and not well represented by 2-d profile simulators. This dissertation investigated the plasma physics and plasma surface interactions in plasma etching chambers using a hybrid plasma equipment model to predict plasma properties and a Monte Carlo feature profile model to predict feature evolution. Algorithms for capturing ion sheath dynamics, controlling dual frequency powers on the same substrate and describing 3-d plasma surface kinetics have been developed and integrated into the models. With the addition of these new algorithms, three challenging areas have been investigated: ion multi-frequency sheath dynamics, control of ion energy angular distributions and 3-d plasma etching. The ion kinetics are found to be controlled through several critical parameters, such as shifting phases, tuning frequencies, and adjusting rf voltage ratios. The 3-d profile model addresses the complex feature pattern layout and aids in the physical understanding of ion 3-d bombardment on surfaces. With this improved capability, correlations of the variability of plasma tool performance with variability of feature dimensions are investigated.en_US
dc.language.isoen_USen_US
dc.subjectplasma etchingen_US
dc.subjectwafer fabricationen_US
dc.subjection energy angular distributionen_US
dc.subjectprofile simulationen_US
dc.subjectplasma physics and chemistryen_US
dc.titleLow Temperature Plasma Etching Control through Ion Energy Angular Distribution and 3-Dimensional Profile Simulation.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberKushner, Marken_US
dc.contributor.committeememberFoster, John Edisonen_US
dc.contributor.committeememberGianchandani, Yogesh B.en_US
dc.contributor.committeememberTerry Jr., Fred L.en_US
dc.contributor.committeememberShannon, Steven C.en_US
dc.contributor.committeememberGilchrist, Brian E.en_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113432/1/yitingz_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.