Show simple item record

Approximate Analysis of Large Simulation-Based Games.

dc.contributor.authorWiedenbeck, Bryceen_US
dc.date.accessioned2015-09-30T14:24:47Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2015-09-30T14:24:47Z
dc.date.issued2015en_US
dc.date.submitted2015en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113587
dc.description.abstractGame theory offers powerful tools for reasoning about agent behavior and incentives in multi-agent systems. Traditional approaches to game-theoretic analysis require enumeration of all possible strategies and outcomes. This often constrains game models to small numbers of agents and strategies or simple closed-form payoff descriptions. Simulation-based game theory extends the reach of game-theoretic analysis through the use of agent-based modeling. In the simulation-based approach, the analyst describes an environment procedurally and then computes payoffs by simulation of agent interactions in that environment. I use simulation-based game theory to study a model of credit network formation. Credit networks represent trust relationships in a directed graph and have been proposed as a mechanism for distributed transactions without a central currency. I explore what information is important when agents make initial decisions of whom to trust, and what sorts of networks can result from their decisions. This setting demonstrates both the value of simulation-based game theory—extending game-theoretic analysis beyond analytically tractable models—and its limitations—simulations produce prodigious amounts of data, and the number of simulations grows exponentially in the number of agents and strategies. I propose several techniques for approximate analysis of simulation-based games with large numbers of agents and large amounts of simulation data. First, I show how bootstrap-based statistics can be used to estimate confidence bounds on the results of simulation-based game analysis. I show that bootstrap confidence intervals for regret of approximate equilibria are well-calibrated. Next, I describe deviation-preserving reduction, which approximates an environment with a large number of agents using a game model with a small number of players, and demonstrate that it outperforms previous player reductions on several measures. Finally, I employ machine learning to construct game models from sparse data sets, and provide evidence that learned game models can produce even better approximate equilibria in large games than deviation-preserving reduction.en_US
dc.language.isoen_USen_US
dc.subjectsimulation-based game theoryen_US
dc.titleApproximate Analysis of Large Simulation-Based Games.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineComputer Science and Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberWellman, Michael P.en_US
dc.contributor.committeememberBorgers, Tilman M.en_US
dc.contributor.committeememberBaveja, Satinder Singhen_US
dc.contributor.committeememberSchoenebeck, Granten_US
dc.subject.hlbsecondlevelComputer Scienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113587/1/btwied_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.