Show simple item record

Near-Threshold Computing: Past, Present, and Future.

dc.contributor.authorPinckney, Nathaniel Rossen_US
dc.date.accessioned2015-09-30T14:24:55Z
dc.date.available2016-10-10T14:50:23Zen
dc.date.issued2015en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113600
dc.description.abstractTransistor threshold voltages have stagnated in recent years, deviating from constant-voltage scaling theory and directly limiting supply voltage scaling. To overcome the resulting energy and power dissipation barriers, energy efficiency can be improved through aggressive voltage scaling, and there has been increased interest in operating at near-threshold computing (NTC) supply voltages. In this region sizable energy gains are achieved with moderate performance loss, some of which can be regained through parallelism. This thesis first provides a methodical definition of how near to threshold is "near threshold" and continues with an in-depth examination of NTC across past, present, and future CMOS technologies. By systematically defining near-threshold, the trends and tradeoffs are analyzed, lending insight in how best to design and optimize near-threshold systems. NTC works best for technologies that feature good circuit delay scalability, therefore technologies without strong short-channel effects. Early planar technologies (prior to 90nm or so) featured good circuit scalability (8x energy gains), but lacked area in which to add cores for parallelization. Recent planar nodes (32nm – 20nm) feature more area for cores but suffer from poor delay scalability, and so are not well-suited for NTC (4x energy gains). The switch to FinFET CMOS technology allows for a return to strong voltage scalability (8x gain), reversing trends seen in planar technologies, while dark silicon has created an opportunity to add cores for parallelization. Improved FinFET voltage scalability even allows for latency reduction of a single task, as long as the task is sufficiently parallelizable (< 10% serial code). Finally, we will look at a technique for fast voltage boosting, called Shortstop, in which a core's operating voltage is raised in 10s of cycles. Shortstop can be used to quickly respond to single-threaded performance demands of a near-threshold system by leveraging the innate parasitic inductance of a dedicated dirty supply rail, further improving energy efficiency. The technique is demonstrated in a wirebond implementation and is able to boost a core up to 1.8x faster than a header-based approach, while reducing supply droop by 2-7x. An improved flip-chip architecture is also proposed.en_US
dc.language.isoen_USen_US
dc.subjectNear Threshold Computingen_US
dc.subjectEnergy Efficiencyen_US
dc.subjectLow Poweren_US
dc.subjectVoltage Boostingen_US
dc.titleNear-Threshold Computing: Past, Present, and Future.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberBlaauw, Daviden_US
dc.contributor.committeememberPipe, Kevin Patricken_US
dc.contributor.committeememberSylvester, Dennis Michaelen_US
dc.contributor.committeememberMudge, Trevor N.en_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113600/1/npfet_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.