Show simple item record

Myeloid cells in hepatocellular carcinoma

dc.contributor.authorWan, Shanshanen_US
dc.contributor.authorKuo, Ningen_US
dc.contributor.authorKryczek, Ilonaen_US
dc.contributor.authorZou, Weipingen_US
dc.contributor.authorWelling, Theodore H.en_US
dc.date.accessioned2015-10-07T20:42:33Z
dc.date.available2016-12-01T14:33:06Zen
dc.date.issued2015-10en_US
dc.identifier.citationWan, Shanshan; Kuo, Ning; Kryczek, Ilona; Zou, Weiping; Welling, Theodore H. (2015). "Myeloid cells in hepatocellular carcinoma." Hepatology 62(4): 1304-1312.en_US
dc.identifier.issn0270-9139en_US
dc.identifier.issn1527-3350en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113692
dc.publisherWiley Periodicals, Inc.en_US
dc.titleMyeloid cells in hepatocellular carcinomaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113692/1/hep27867.pdf
dc.identifier.doi10.1002/hep.27867en_US
dc.identifier.sourceHepatologyen_US
dc.identifier.citedreferenceIlkovitch D, Lopez DM. The liver is a site for tumor‐induced myeloid‐derived suppressor cell accumulation and immunosuppression. Cancer Res 2009; 69: 5514 ‐ 5521.en_US
dc.identifier.citedreferenceKuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, Zheng L. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD‐L1. J Exp Med 2009; 206: 1327 ‐ 1337.en_US
dc.identifier.citedreferenceZea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, et al. Arginase‐producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 2005; 65: 3044 ‐ 3048.en_US
dc.identifier.citedreferenceSrivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand‐Rosenberg S. Myeloid‐derived suppressor cells inhibit T‐cell activation by depleting cystine and cysteine. Cancer Res 2010; 70: 68 ‐ 77.en_US
dc.identifier.citedreferenceMazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, et al. Myeloid suppressor lines inhibit T cell responses by an NO‐dependent mechanism. J Immunol 2002; 168: 689 ‐ 695.en_US
dc.identifier.citedreferenceNagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 2007; 13: 828 ‐ 835.en_US
dc.identifier.citedreferenceSakuishi K, Jayaraman P, Behar SM, Anderson AC, Kuchroo VK. Emerging Tim‐3 functions in antimicrobial and tumor immunity. Trends Immunol 2011; 32: 345 ‐ 349.en_US
dc.identifier.citedreferenceHanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand‐Rosenberg S. Myeloid‐derived suppressor cells down‐regulate L‐selectin expression on CD4+ and CD8+ T cells. J Immunol 2009; 183: 937 ‐ 944.en_US
dc.identifier.citedreferenceHoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. HEPATOLOGY 2009; 50: 799 ‐ 807.en_US
dc.identifier.citedreferenceElkabets M, Ribeiro VS, Dinarello CA, Ostrand‐Rosenberg S, Di Santo JP, Apte RN, Vosshenrich CA. IL‐1beta regulates a novel myeloid‐derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 2010; 40: 3347 ‐ 3357.en_US
dc.identifier.citedreferenceGermano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 2013; 23: 249 ‐ 262.en_US
dc.identifier.citedreferenceBeumer JH, Schellens JH, Beijnen JH. Hepatotoxicity and metabolism of trabectedin: a literature review. Pharmacol Res 2005; 51: 391 ‐ 398.en_US
dc.identifier.citedreferenceBrandon EF, Meijerman I, Klijn JS, den Arend D, Sparidans RW, Lazaro LL, et al. In‐vitro cytotoxicity of ET‐743 (Trabectedin, Yondelis), a marine anti‐cancer drug, in the Hep G2 cell line: influence of cytochrome P450 and phase II inhibition, and cytochrome P450 induction. Anticancer Drugs 2005; 16: 935 ‐ 943.en_US
dc.identifier.citedreferenceBosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology 2004; 127: S5 ‐ S16.en_US
dc.identifier.citedreferenceShi L, Feng Y, Lin H, Ma R, Cai X. Role of estrogen in hepatocellular carcinoma: is inflammation the key? J Transl Med 2014; 12: 93.en_US
dc.identifier.citedreferenceYang W, Lu Y, Xu Y, Xu L, Zheng W, Wu Y, et al. Estrogen represses hepatocellular carcinoma (HCC) growth via inhibiting alternative activation of tumor‐associated macrophages (TAMs). J Biol Chem 2012; 287: 40140 ‐ 40149.en_US
dc.identifier.citedreferenceZou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263 ‐ 274.en_US
dc.identifier.citedreferenceMarrero JA, Welling T. Modern diagnosis and management of hepatocellular carcinoma. Clin Liver Dis 2009; 13: 233 ‐ 247.en_US
dc.identifier.citedreferenceZhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, et al. Bone marrow and the control of immunity. Cell Mol Immunol 2012; 9: 11 ‐ 19.en_US
dc.identifier.citedreferenceGabrilovich DI, Ostrand‐Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12: 253 ‐ 268.en_US
dc.identifier.citedreferenceNoy R, Pollard JW. Tumor‐associated macrophages: from mechanisms to therapy. Immunity 2014; 41: 49 ‐ 61.en_US
dc.identifier.citedreferenceWu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7‐H1/programmed death‐1 interactions. Cancer Res 2009; 69: 8067 ‐ 8075.en_US
dc.identifier.citedreferenceGabrilovich DI, Nagaraj S. Myeloid‐derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162 ‐ 174.en_US
dc.identifier.citedreferenceHoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, et al. A new population of myeloid‐derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008; 135: 234 ‐ 243.en_US
dc.identifier.citedreferenceShen P, Wang A, He M, Wang Q, Zheng S. Increased circulating Lin(‐/low) CD33(+) HLA‐DR(‐) myeloid‐derived suppressor cells in hepatocellular carcinoma patients. Hepatol Res 2014; 44: 639 ‐ 650.en_US
dc.identifier.citedreferenceKalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y. Higher frequencies of GARP+CTLA‐4+Foxp3+ T regulatory cells and myeloid‐derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T‐cell functionality. Cancer Res 2013; 73: 2435 ‐ 2444.en_US
dc.identifier.citedreferenceNarita Y, Wakita D, Ohkur T, Chamoto K, Nishimura T. Potential differentiation of tumor bearing mouse CD11b+Gr‐1+ immature myeloid cells into both suppressor macrophages and immunostimulatory dendritic cells. Biomed Res 2009; 30: 7 ‐ 15.en_US
dc.identifier.citedreferenceCorzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, et al. HIF‐1alpha regulates function and differentiation of myeloid‐derived suppressor cells in the tumor microenvironment. J Exp Med 2010; 207: 2439 ‐ 2453.en_US
dc.identifier.citedreferencePikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF‐kappaB functions as a tumour promoter in inflammation‐associated cancer. Nature 2004; 431: 461 ‐ 466.en_US
dc.identifier.citedreferenceMaeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine‐driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121: 977 ‐ 990.en_US
dc.identifier.citedreferenceNaugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M. Gender disparity in liver cancer due to sex differences in MyD88‐dependent IL‐6 production. Science 2007; 317: 121 ‐ 124.en_US
dc.identifier.citedreferenceWu J, Li J, Salcedo R, Mivechi NF, Trinchieri G, Horuzsko A. The proinflammatory myeloid cell receptor TREM‐1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res 2012; 72: 3977 ‐ 3986.en_US
dc.identifier.citedreferenceKapanadze T, Gamrekelashvili J, Ma C, Chan C, Zhao F, Hewitt S, et al. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J Hepatol 2013; 59: 1007 ‐ 1013.en_US
dc.identifier.citedreferenceBalkwill FR, Mantovani A. Cancer‐related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 2012; 22: 33 ‐ 40.en_US
dc.identifier.citedreferenceYang L, DeBusk LM, Fukuda K, Fingleton B, Green‐Jarvis B, Shyr Y, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor‐bearing host directly promotes tumor angiogenesis. Cancer Cell 2004; 6: 409 ‐ 421.en_US
dc.identifier.citedreferenceZhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX, et al. Depletion of tumor‐associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res 2010; 16: 3420 ‐ 3430.en_US
dc.identifier.citedreferenceCramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, et al. HIF‐1alpha is essential for myeloid cell‐mediated inflammation. Cell 2003; 112: 645 ‐ 657.en_US
dc.identifier.citedreferenceWelling TH, Fu S, Wan S, Zou W, Marrero JA. Elevated serum IL‐8 is associated with presence of hepatocellular carcinoma and independently predicts survival. Cancer Invest 2012; 30: 689 ‐ 697.en_US
dc.identifier.citedreferenceVenneri MA, De Palma M, Ponzoni M, Pucci F, Scielzo C, Zonari E, et al. Identification of proangiogenic TIE2‐expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 2007; 109: 5276 ‐ 5285.en_US
dc.identifier.citedreferenceMatsubara T, Kanto T, Kuroda S, Yoshio S, Higashitani K, Kakita N, et al. TIE2‐expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. HEPATOLOGY 2013; 57: 1416 ‐ 1425.en_US
dc.identifier.citedreferenceZhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W, Xiong YQ, et al. High expression of macrophage colony‐stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol 2008; 26: 2707 ‐ 2716.en_US
dc.identifier.citedreferenceBudhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 2006; 10: 99 ‐ 111.en_US
dc.identifier.citedreferenceGocheva V, Joyce JA. Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 2007; 6: 60 ‐ 64.en_US
dc.identifier.citedreferenceEgeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161 ‐ 174.en_US
dc.identifier.citedreferenceArii S, Mise M, Harada T, Furutani M, Ishigami S, Niwano M, et al. Overexpression of matrix metalloproteinase 9 gene in hepatocellular carcinoma with invasive potential. HEPATOLOGY 1996; 24: 316 ‐ 322.en_US
dc.identifier.citedreferenceRoderfeld M, Rath T, Lammert F, Dierkes C, Graf J, Roeb E. Innovative immunohistochemistry identifies MMP‐9 expressing macrophages at the invasive front of murine HCC. World J Hepatol 2010; 2: 175 ‐ 179.en_US
dc.identifier.citedreferenceKaneyoshi T, Nakatsukasa H, Higashi T, Fujiwara K, Naito I, Nouso K, et al. Actual invasive potential of human hepatocellular carcinoma revealed by in situ gelatin zymography. Clin Cancer Res 2001; 7: 4027 ‐ 4032.en_US
dc.identifier.citedreferenceYeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol 2015; 62: 607 ‐ 616.en_US
dc.identifier.citedreferenceXia L, Huang W, Tian D, Zhang L, Qi X, Chen Z, et al. Forkhead box Q1 promotes hepatocellular carcinoma metastasis by transactivating ZEB2 and VersicanV1 expression. HEPATOLOGY 2014; 59: 958 ‐ 973.en_US
dc.identifier.citedreferenceLin CY, Lin CJ, Chen KH, Wu JC, Huang SH, Wang SM. Macrophage activation increases the invasive properties of hepatoma cells by destabilization of the adherens junction. FEBS Lett 2006; 580: 3042 ‐ 3050.en_US
dc.identifier.citedreferenceFan QM, Jing YY, Yu GF, Kou XR, Ye F, Gao L, et al. Tumor‐associated macrophages promote cancer stem cell‐like properties via transforming growth factor‐beta1‐induced epithelial‐mesenchymal transition in hepatocellular carcinoma. Cancer Lett 2014; 352: 160 ‐ 168.en_US
dc.identifier.citedreferenceWan S, Zhao E, Kryczek I, Vatan L, Sadovskaya A, Ludema G, et al. Tumor‐associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 2014; 147: 1393 ‐ 1404.en_US
dc.identifier.citedreferenceCui TX, Kryczek I, Zhao L, Zhao E, Kuick R, Roh MH, et al. Myeloid‐derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 2013; 39: 611 ‐ 621.en_US
dc.identifier.citedreferenceChew V, Tow C, Teo M, Wong HL, Chan J, Gehring A, et al. Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. J Hepatol 2010; 52: 370 ‐ 379.en_US
dc.identifier.citedreferenceWada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 1998; 27: 407 ‐ 414.en_US
dc.identifier.citedreferenceLi H, Wu K, Tao K, Chen L, Zheng Q, Lu X, et al. Tim‐3/galectin‐9 signaling pathway mediates T cell dysfunction and predicts poor prognosis in patients with HBV‐associated hepatocellular carcinoma. HEPATOLOGY 2012; 56: 1342 ‐ 1351.en_US
dc.identifier.citedreferenceKryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, et al. B7‐H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 2006; 203: 871 ‐ 881.en_US
dc.identifier.citedreferenceMantovani A, Sica A, Allavena P, Garlanda C, Locati M. Tumor‐associated macrophages and the related myeloid‐derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 2009; 70: 325 ‐ 330.en_US
dc.identifier.citedreferenceCuriel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942 ‐ 949.en_US
dc.identifier.citedreferenceSchutyser E, Struyf S, Proost P, Opdenakker G, Laureys G, Verhasselt B, et al. Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation‐regulated chemokine in ovarian carcinoma. J Biol Chem 2002; 277: 24584 ‐ 24593.en_US
dc.identifier.citedreferenceZhou J, Ding T, Pan W, Zhu LY, Li L, Zheng L. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer 2009; 125: 1640 ‐ 1648.en_US
dc.identifier.citedreferenceTiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A 2007; 104: 19446 ‐ 19451.en_US
dc.identifier.citedreferenceZhao Q, Kuang DM, Wu Y, Xiao X, Li XF, Li TJ, Zheng L. Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor‐associated macrophages. J Immunol 2012; 188: 1117 ‐ 1124.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.