Show simple item record

Transcriptional control of circadian metabolic rhythms in the liver

dc.contributor.authorLi, S.en_US
dc.contributor.authorLin, J. D.en_US
dc.date.accessioned2015-10-07T20:42:46Z
dc.date.available2016-10-10T14:50:24Zen
dc.date.issued2015-09en_US
dc.identifier.citationLi, S.; Lin, J. D. (2015). "Transcriptional control of circadian metabolic rhythms in the liver." Diabetes, Obesity and Metabolism 17: 33-38.en_US
dc.identifier.issn1462-8902en_US
dc.identifier.issn1463-1326en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113716
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othermetabolismen_US
dc.subject.othertranscriptionen_US
dc.subject.otherPGC‐1en_US
dc.subject.otherautophagyen_US
dc.subject.othercircadian rhythmen_US
dc.subject.otherclocken_US
dc.subject.otherglucoseen_US
dc.subject.otherlipiden_US
dc.subject.otherliveren_US
dc.titleTranscriptional control of circadian metabolic rhythms in the liveren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPublic Health (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113716/1/dom12520.pdf
dc.identifier.doi10.1111/dom.12520en_US
dc.identifier.sourceDiabetes, Obesity and Metabolismen_US
dc.identifier.citedreferenceVirshup DM, Eide EJ, Forger DB, Gallego M, Harnish EV. Reversible protein phosphorylation regulates circadian rhythms. Cold Spring Harb Symp Quant Biol 2007; 72: 413 – 420.en_US
dc.identifier.citedreferenceMa D, Panda S, Lin JD. Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J 2011; 30: 4642 – 4651.en_US
dc.identifier.citedreferenceLoudon AS, Meng QJ, Maywood ES, Bechtold DA, Boot‐Handford RP, Hastings MH. The biology of the circadian Ck1 epsilon tau mutation in mice and Syrian hamsters: a tale of two species. Cold Spring Harb Symp Quant Biol 2007; 72: 261 – 271.en_US
dc.identifier.citedreferenceLin JD, Liu C, Li S. Integration of energy metabolism and the mammalian clock. Cell Cycle 2008; 7: 453 – 457.en_US
dc.identifier.citedreferenceLowrey PL, Shimomura K, Antoch MP et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 2000; 288: 483 – 492.en_US
dc.identifier.citedreferenceRalph MR, Menaker M. A mutation of the circadian system in golden hamsters. Science 1988; 241: 1225 – 1227.en_US
dc.identifier.citedreferenceKloss B, Price JL, Saez L et al. The Drosophila clock gene double‐time encodes a protein closely related to human casein kinase I epsilon. Cell 1998; 94: 97 – 107.en_US
dc.identifier.citedreferencePrice JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW. Double‐time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 1998; 94: 83 – 95.en_US
dc.identifier.citedreferenceYoung MW. The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu Rev Biochem 1998; 67: 135 – 152.en_US
dc.identifier.citedreferenceXu Y, Padiath QS, Shapiro RE et al. Functional consequences of a CKI delta mutation causing familial advanced sleep phase syndrome. Nature 2005; 434: 640 – 644.en_US
dc.identifier.citedreferenceLi S, Chen XW, Yu L, Saltiel AR, Lin JD. Circadian metabolic regulation through crosstalk between casein kinase 1 delta and transcriptional coactivator PGC‐1alpha. Mol Endocrinol 2011; 25: 2084 – 2093.en_US
dc.identifier.citedreferenceHe C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009; 43: 67 – 93.en_US
dc.identifier.citedreferenceMizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011; 147: 728 – 741.en_US
dc.identifier.citedreferenceKuma A, Hatano M, Matsui M et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432: 1032 – 1036.en_US
dc.identifier.citedreferenceMizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004; 15: 1101 – 1111.en_US
dc.identifier.citedreferenceChoi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med 2013; 368: 651 – 662.en_US
dc.identifier.citedreferencePfeifer U, Strauss P. Autophagic vacuoles in heart muscle and liver. A comparative morphometric study including circadian variations in meal‐fed rats. J Mol Cell Cardiol 1981; 13: 37 – 49.en_US
dc.identifier.citedreferencePfeifer U, Scheller H. A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats. J Cell Biol 1975; 64: 608 – 621.en_US
dc.identifier.citedreferenceMa D, Li S, Molusky MM, Lin JD. Circadian autophagy rhythm: a link between clock and metabolism? Trends Endocrinol Metab 2012; 23: 319 – 325.en_US
dc.identifier.citedreferenceSettembre C, Di Malta C, Polito VA et al. TFEB links autophagy to lysosomal biogenesis. Science 2011; 332: 1429 – 1433.en_US
dc.identifier.citedreferenceSardiello M, Palmieri M, di Ronza A et al. A gene network regulating lysosomal biogenesis and function. Science 2009; 325: 473 – 477.en_US
dc.identifier.citedreferencePena‐Llopis S, Vega‐Rubin‐de‐Celis S, Schwartz JC et al. Regulation of TFEB and V‐ATPases by mTORC1. EMBO J 2011; 30: 3242 – 3258.en_US
dc.identifier.citedreferenceSettembre C, Zoncu R, Medina DL et al. A lysosome‐to‐nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012; 31: 1095 – 1108.en_US
dc.identifier.citedreferenceHosokawa N, Hara T, Kaizuka T et al. Nutrient‐dependent mTORC1 association with the ULK1‐Atg13‐FIP200 complex required for autophagy. Mol Biol Cell 2009; 20: 1981 – 1991.en_US
dc.identifier.citedreferenceJung CH, Jun CB, Ro SH et al. ULK‐Atg13‐FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20: 1992 – 2003.en_US
dc.identifier.citedreferenceMa D, Molusky MM, Song J et al. Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Mol Endocrinol 2013; 27: 1643 – 1654.en_US
dc.identifier.citedreferenceDamiola F, Le Minh N, Preitner N, Kornmann B, Fleury‐Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000; 14: 2950 – 2961.en_US
dc.identifier.citedreferenceHara R, Wan K, Wakamatsu H et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 2001; 6: 269 – 278.en_US
dc.identifier.citedreferenceStokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science 2001; 291: 490 – 493.en_US
dc.identifier.citedreferenceGeusz ME, Fletcher C, Block GD et al. Long‐term monitoring of circadian rhythms in c‐fos gene expression from suprachiasmatic nucleus cultures. Curr Biol 1997; 7: 758 – 766.en_US
dc.identifier.citedreferenceBalsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 1998; 93: 929 – 937.en_US
dc.identifier.citedreferenceNagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. Circadian gene expression in individual fibroblasts: cell‐autonomous and self‐sustained oscillators pass time to daughter cells. Cell 2004; 119: 693 – 705.en_US
dc.identifier.citedreferenceAsher G, Sassone‐Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015; 161: 84 – 92.en_US
dc.identifier.citedreferenceAsher G, Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 2011; 13: 125 – 137.en_US
dc.identifier.citedreferenceBass J, Takahashi JS. Circadian integration of metabolism and energetics. Science 2010; 330: 1349 – 1354.en_US
dc.identifier.citedreferenceDallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. Proc Natl Acad Sci U S A 2012; 109: 2625 – 2629.en_US
dc.identifier.citedreferenceEckel‐Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone‐Corsi P. Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A 2012; 109: 5541 – 5546.en_US
dc.identifier.citedreferenceKasukawa T, Sugimoto M, Hida A et al. Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci U S A 2012; 109: 15036 – 15041.en_US
dc.identifier.citedreferenceLowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome‐wide levels of temporal organization. Annu Rev Genomics Hum Genet 2004; 5: 407 – 441.en_US
dc.identifier.citedreferencePanda S, Antoch MP, Miller BH et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002; 109: 307 – 320.en_US
dc.identifier.citedreferenceStorch KF, Lipan O, Leykin I et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002; 417: 78 – 83.en_US
dc.identifier.citedreferenceUeda HR, Chen W, Adachi A et al. A transcription factor response element for gene expression during circadian night. Nature 2002; 418: 534 – 539.en_US
dc.identifier.citedreferenceMammucari C, Milan G, Romanello V et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007; 6: 458 – 471.en_US
dc.identifier.citedreferenceZhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 2014; 111: 16219 – 16224.en_US
dc.identifier.citedreferenceCopinschi G, Spiegel K, Leproult R, Van Cauter E. Pathophysiology of human circadian rhythms. Novartis Found Symp 2000; 227: 143 – 157; discussion 157–162..en_US
dc.identifier.citedreferenceCutolo M, Otsa K, Aakre O, Sulli A. Nocturnal hormones and clinical rhythms in rheumatoid arthritis. Ann N Y Acad Sci 2005; 1051: 372 – 381.en_US
dc.identifier.citedreferenceCzeisler CA, Klerman EB. Circadian and sleep‐dependent regulation of hormone release in humans. Recent Prog Horm Res 1999; 54: 97 – 130; discussion 130–132.en_US
dc.identifier.citedreferenceFu L, Lee CC. The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 2003; 3: 350 – 361.en_US
dc.identifier.citedreferenceJones CR, Campbell SS, Zone SE et al. Familial advanced sleep‐phase syndrome: a short‐period circadian rhythm variant in humans. Nat Med 1999; 5: 1062 – 1065.en_US
dc.identifier.citedreferenceKlerman GL, Davidson EM, Kayce MM. Factors influencing the clinical responses of schizophrenic patients to phenothiazine drugs and to placebo. Psychiatr Res Rep Am Psychiatr Assoc 1964; 19: 97 – 115.en_US
dc.identifier.citedreferenceScheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 2009; 106: 4453 – 4458.en_US
dc.identifier.citedreferenceSpiegel K, Tasali E, Leproult R, Van Cauter E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol 2009; 5: 253 – 261.en_US
dc.identifier.citedreferenceHatori M, Vollmers C, Zarrinpar A et al. Time‐restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high‐fat diet. Cell Metab 2012; 15: 848 – 860.en_US
dc.identifier.citedreferenceTurek FW, Joshu C, Kohsaka A et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005; 308: 1043 – 1045.en_US
dc.identifier.citedreferenceLamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 2008; 105: 15172 – 15177.en_US
dc.identifier.citedreferenceRudic RD, McNamara P, Curtis AM et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2004; 2: e377.en_US
dc.identifier.citedreferenceLee J, Kim MS, Li R et al. Loss of Bmal1 leads to uncoupling and impaired glucose‐stimulated insulin secretion in beta‐cells. Islets 2011; 3: 381 – 388.en_US
dc.identifier.citedreferenceMarcheva B, Ramsey KM, Buhr ED et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010; 466: 627 – 631.en_US
dc.identifier.citedreferenceBugge A, Feng D, Everett LJ et al. Rev‐erbalpha and Rev‐erbbeta coordinately protect the circadian clock and normal metabolic function. Genes Dev 2012; 26: 657 – 667.en_US
dc.identifier.citedreferenceCho H, Zhao X, Hatori M et al. Regulation of circadian behaviour and metabolism by REV‐ERB‐alpha and REV‐ERB‐beta. Nature 2012; 485: 123 – 127.en_US
dc.identifier.citedreferenceLin J, Handschin C, Spiegelman BM. Metabolic control through the PGC‐1 family of transcription coactivators. Cell Metab 2005; 1: 361 – 370.en_US
dc.identifier.citedreferenceScarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 2012; 23: 459 – 466.en_US
dc.identifier.citedreferencePuigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold‐inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829 – 839.en_US
dc.identifier.citedreferenceHerzig S, Long F, Jhala US et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC‐1. Nature 2001; 413: 179 – 183.en_US
dc.identifier.citedreferenceYoon JC, Puigserver P, Chen G et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC‐1. Nature 2001; 413: 131 – 138.en_US
dc.identifier.citedreferenceBaar K, Wende AR, Jones TE et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC‐1. FASEB J 2002; 16: 1879 – 1886.en_US
dc.identifier.citedreferenceTerada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I. Effects of low‐intensity prolonged exercise on PGC‐1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 2002; 296: 350 – 354.en_US
dc.identifier.citedreferenceLin J, Yang R, Tarr PT et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC‐1beta coactivation of SREBP. Cell 2005; 120: 261 – 273.en_US
dc.identifier.citedreferenceLin J, Wu PH, Tarr PT et al. Defects in adaptive energy metabolism with CNS‐linked hyperactivity in PGC‐1alpha null mice. Cell 2004; 119: 121 – 135.en_US
dc.identifier.citedreferenceLelliott CJ, Medina‐Gomez G, Petrovic N et al. Ablation of PGC‐1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol 2006; 4: e369.en_US
dc.identifier.citedreferenceLin J, Wu H, Tarr PT et al. Transcriptional co‐activator PGC‐1 alpha drives the formation of slow‐twitch muscle fibres. Nature 2002; 418: 797 – 801.en_US
dc.identifier.citedreferenceHernandez C, Molusky M, Li Y, Li S, Lin JD. Regulation of hepatic ApoC3 expression by PGC‐1beta mediates hypolipidemic effect of nicotinic acid. Cell Metab 2010; 12: 411 – 419.en_US
dc.identifier.citedreferenceIshii KA, Fumoto T, Iwai K et al. Coordination of PGC‐1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 2009; 15: 259 – 266.en_US
dc.identifier.citedreferenceLiu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC‐1alpha integrates the mammalian clock and energy metabolism. Nature 2007; 447: 477 – 481.en_US
dc.identifier.citedreferenceAlenghat T, Meyers K, Mullican SE et al. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 2008; 456: 997 – 1000.en_US
dc.identifier.citedreferenceYin L, Lazar MA. The orphan nuclear receptor Rev‐erbalpha recruits the N‐CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol Endocrinol 2005; 19: 1452 – 1459.en_US
dc.identifier.citedreferenceSonoda J, Mehl IR, Chong LW, Nofsinger RR, Evans RM. PGC‐1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci U S A 2007; 104: 5223 – 5228.en_US
dc.identifier.citedreferencePuigserver P, Adelmant G, Wu Z et al. Activation of PPARgamma coactivator‐1 through transcription factor docking. Science 1999; 286: 1368 – 1371.en_US
dc.identifier.citedreferenceRodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC‐1alpha and SIRT1. Nature 2005; 434: 113 – 118.en_US
dc.identifier.citedreferenceWallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG. Coordination of p300‐mediated chromatin remodeling and TRAP/mediator function through coactivator PGC‐1alpha. Mol Cell 2003; 12: 1137 – 1149.en_US
dc.identifier.citedreferenceLi S, Liu C, Li N et al. Genome‐wide coactivation analysis of PGC‐1alpha identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab 2008; 8: 105 – 117.en_US
dc.identifier.citedreferencePuigserver P, Rhee J, Donovan J et al. Insulin‐regulated hepatic gluconeogenesis through FOXO1‐PGC‐1alpha interaction. Nature 2003; 423: 550 – 555.en_US
dc.identifier.citedreferenceMolusky MM, Li S, Ma D, Yu L, Lin JD. Ubiquitin‐specific protease 2 regulates hepatic gluconeogenesis and diurnal glucose metabolism through 11beta‐hydroxysteroid dehydrogenase 1. Diabetes 2012; 61: 1025 – 1035.en_US
dc.identifier.citedreferenceMolusky MM, Ma D, Buelow K, Yin L, Lin JD. Peroxisomal localization and circadian regulation of ubiquitin‐specific protease 2. PLoS One 2012; 7: e47970.en_US
dc.identifier.citedreferenceReppert SM, Weaver DR. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 2001; 63: 647 – 676.en_US
dc.identifier.citedreferenceReppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002; 418: 935 – 941.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.