Show simple item record

Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system

dc.contributor.authorRao, Meenakshien_US
dc.contributor.authorNelms, Bradlee D.en_US
dc.contributor.authorDong, Laurenen_US
dc.contributor.authorSalinas‐rios, Vivianaen_US
dc.contributor.authorRutlin, Michaelen_US
dc.contributor.authorGershon, Michael D.en_US
dc.contributor.authorCorfas, Gabrielen_US
dc.date.accessioned2015-10-07T20:42:55Z
dc.date.available2017-01-03T16:21:17Zen
dc.date.issued2015-11en_US
dc.identifier.citationRao, Meenakshi; Nelms, Bradlee D.; Dong, Lauren; Salinas‐rios, Viviana ; Rutlin, Michael; Gershon, Michael D.; Corfas, Gabriel (2015). "Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system." Glia 63(11): 2040-2057.en_US
dc.identifier.issn0894-1491en_US
dc.identifier.issn1098-1136en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113731
dc.publisherBlackwell Puben_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherRNA‐Seqen_US
dc.subject.othergastrointestinal tracten_US
dc.subject.otherneurogliaen_US
dc.subject.otherenteric nervous systemen_US
dc.titleEnteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous systemen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113731/1/glia22876.pdf
dc.identifier.doi10.1002/glia.22876en_US
dc.identifier.sourceGliaen_US
dc.identifier.citedreferenceNasser Y, Fernandez E, Keenan CM, Ho W, Oland LD, Tibbles LA, Schemann M, MacNaughton WK, Ruhl A, Sharkey KA. 2006a. Role of enteric glia in intestinal physiology: effects of the gliotoxin fluorocitrate on motor and secretory function. Am J Physiol Gastrointest Liver Physiol 291: G912 – G927.en_US
dc.identifier.citedreferenceLaranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, Vanden Berghe P, Pachnis V. 2011. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest 121: 3412 – 3424.en_US
dc.identifier.citedreferenceLavoie EG, Gulbransen BD, Martin‐Satue M, Aliagas E, Sharkey KA, Sevigny J. 2011. Ectonucleotidases in the digestive system: Focus on NTPDase3 localization. Am J Physiol Gastrointest Liver Physiol 300: G608 – G620.en_US
dc.identifier.citedreferenceLi L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, et al. 2011. The functional organization of cutaneous low‐threshold mechanosensory neurons. Cell 147: 1615 – 1627.en_US
dc.identifier.citedreferenceLiu YA, Chung YC, Pan ST, Shen MY, Hou YC, Peng SJ, Pasricha PJ, Tang SC. 2013. 3‐D imaging, illustration, and quantitation of enteric glial network in transparent human colon mucosa. Neurogastroenterol Motil 25: e324 – e338.en_US
dc.identifier.citedreferenceLottaz C, Yang X, Scheid S, Spang R. 2006. OrderedList—a bioconductor package for detecting similarity in ordered gene lists. Bioinformatics 22: 2315 – 2316.en_US
dc.identifier.citedreferenceLukk M, Kapushesky M, Nikkila J, Parkinson H, Goncalves A, Huber W, Ukkonen E, Brazma A. 2010. A global map of human gene expression. Nat Biotechnol 28: 322 – 324.en_US
dc.identifier.citedreferenceMadisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, et al. 2010. A robust and high‐throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13: 133 – 140.en_US
dc.identifier.citedreferenceMallon BS, Shick HE, Kidd GJ, Macklin WB. 2002. Proteolipid promoter activity distinguishes two populations of NG2‐positive cells throughout neonatal cortical development. J Neurosci 22: 876 – 885.en_US
dc.identifier.citedreferenceMaudlej N, Hanani M. 1992. Modulation of dye coupling among glial cells in the myenteric and submucosal plexuses of the guinea pig. Brain Res 578: 94 – 98.en_US
dc.identifier.citedreferenceMiyamoto Y, Torii T, Tanoue A, Yamauchi J. 2012. Pelizaeus‐Merzbacher disease‐associated proteolipid protein 1 inhibits oligodendrocyte precursor cell differentiation via extracellular‐signal regulated kinase signaling. Biochem Biophys Res Commun 424: 262 – 268.en_US
dc.identifier.citedreferenceMorris JK, Maklad A, Hansen LA, Feng F, Sorensen C, Lee KF, Macklin WB, Fritzsch B. 2006. A disorganized innervation of the inner ear persists in the absence of ErbB2. Brain Res 1091: 186 – 199.en_US
dc.identifier.citedreferenceMundell NA, Plank JL, LeGrone AW, Frist AY, Zhu L, Shin MK, Southard‐Smith EM, Labosky PA. 2012. Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors. Dev Biol 363: 373 – 387.en_US
dc.identifier.citedreferenceNasser Y, Ho W, Sharkey KA. 2006b. Distribution of adrenergic receptors in the enteric nervous system of the guinea pig, mouse, and rat. J Comp Neurol 495: 529 – 553.en_US
dc.identifier.citedreferenceNeunlist M, Van Landeghem L, Mahe MM, Derkinderen P, des Varannes SB, Rolli‐Derkinderen M. 2013. The digestive neuronal‐glial‐epithelial unit: A new actor in gut health and disease. Nat Rev Gastroenterol Hepatol 10: 90 – 100.en_US
dc.identifier.citedreferenceSavidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M, Bourreille A, Hurst R, Sofroniew MV. 2007. Enteric glia regulate intestinal barrier function and inflammation via release of S‐nitrosoglutathione. Gastroenterology 132: 1344 – 1358.en_US
dc.identifier.citedreferenceSchneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671 – 675.en_US
dc.identifier.citedreferenceSilver J, Miller JH. 2004. Regeneration beyond the glial scar. Nat Rev Neurosci 5: 146 – 156.en_US
dc.identifier.citedreferenceSubramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. 2005. Gene set enrichment analysis: A knowledge‐based approach for interpreting genome‐wide expression profiles. Proc Natl Acad Sci U S A 102: 15545 – 15550.en_US
dc.identifier.citedreferenceTrapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA‐seq experiments with TopHat and Cufflinks. Nat Protoc 7: 562 – 578.en_US
dc.identifier.citedreferenceWilson AJ, Furness JB, Costa M. 1981. The fine structure of the submucous plexus of the guinea‐pig ileum. I. The ganglia, neurons, Schwann cells and neuropil. J Neurocytol 10: 759 – 784.en_US
dc.identifier.citedreferenceWink MR, Braganhol E, Tamajusuku AS, Lenz G, Zerbini LF, Libermann TA, Sevigny J, Battastini AM, Robson SC. 2006. Nucleoside triphosphate diphosphohydrolase‐2 (NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 138: 421 – 432.en_US
dc.identifier.citedreferenceYang X, Bentink S, Scheid S, Spang R. 2006. Similarities of ordered gene lists. J Bioinform Comput Biol 4: 693 – 708.en_US
dc.identifier.citedreferenceYoung HM, Bergner AJ, Muller T. 2003. Acquisition of neuronal and glial markers by neural crest‐derived cells in the mouse intestine. J Comp Neurol 456: 1 – 11.en_US
dc.identifier.citedreferenceZhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, et al. 2014. An RNA‐sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34: 11929 – 11947.en_US
dc.identifier.citedreferenceZheng‐Bradley X, Rung J, Parkinson H, Brazma A. 2010. Large scale comparison of global gene expression patterns in human and mouse. Genome Biol 11: R124.en_US
dc.identifier.citedreferenceZhu Y, Davis S, Stephens R, Meltzer PS, Chen Y. 2008. GEOmetadb: Powerful alternative search engine for the Gene Expression Omnibus. Bioinformatics 24: 2798--2800.en_US
dc.identifier.citedreferenceZilliox MJ, Irizarry RA. 2007. A gene expression bar code for microarray data. Nat Methods 4: 911 – 913.en_US
dc.identifier.citedreferenceAube AC, Cabarrocas J, Bauer J, Philippe D, Aubert P, Doulay F, Liblau R, Galmiche JP, Neunlist M. 2006. Changes in enteric neurone phenotype and intestinal functions in a transgenic mouse model of enteric glia disruption. Gut 55: 630 – 637.en_US
dc.identifier.citedreferenceBoesmans W, Lasrado R, Vanden Berghe P, Pachnis V. 2015. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 63: 229 – 241.en_US
dc.identifier.citedreferenceBohorquez DV, Samsa LA, Roholt A, Medicetty S, Chandra R, Liddle RA. 2014. An enteroendocrine cell‐enteric glia connection revealed by 3D electron microscopy. PLoS One 9: e89881.en_US
dc.identifier.citedreferenceBraun N, Sevigny J, Robson SC, Hammer K, Hanani M, Zimmermann H. 2004. Association of the ecto‐ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia 45: 124 – 132.en_US
dc.identifier.citedreferenceBuchstaller J, Sommer L, Bodmer M, Hoffmann R, Suter U, Mantei N. 2004. Efficient isolation and gene expression profiling of small numbers of neural crest stem cells and developing Schwann cells. J Neurosci 24: 2357 – 2365.en_US
dc.identifier.citedreferenceBush TG, Savidge TC, Freeman TC, Cox HJ, Campbell EA, Mucke L, Johnson MH, Sofroniew MV. 1998. Fulminant jejuno‐ileitis following ablation of enteric glia in adult transgenic mice. Cell 93: 189 – 201.en_US
dc.identifier.citedreferenceCahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, et al. 2008. A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J Neurosci 28: 264 – 278.en_US
dc.identifier.citedreferenceCarpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, et al. 2006. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7: R100.en_US
dc.identifier.citedreferenceClairembault T, Kamphuis W, Leclair‐Visonneau L, Rolli‐Derkinderen M, Coron E, Neunlist M, Hol EM, Derkinderen P. 2014. Enteric GFAP expression and phosphorylation in Parkinson's disease. J Neurochem 130: 805 – 815.en_US
dc.identifier.citedreferenceCook RD, Burnstock G. 1976. The ultrastructure of Auerbach's plexus in the guinea‐pig. II. Non‐neuronal elements. J Neurocytol 5: 195 – 206.en_US
dc.identifier.citedreferenceDeber CM, Reynolds SJ. 1991. Central nervous system myelin: Structure, function, and pathology. Clin Biochem 24: 113 – 134.en_US
dc.identifier.citedreferenceDoerflinger NH, Macklin WB, Popko B. 2003. Inducible site‐specific recombination in myelinating cells. Genesis 35: 63 – 72.en_US
dc.identifier.citedreferenceDuregotti E, Negro S, Scorzeto M, Zornetta I, Dickinson BC, Chang CJ, Montecucco C, Rigoni M. 2015. Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells. Proc Natl Acad Sci USA 112: E497 – 505.en_US
dc.identifier.citedreferenceel Marjou F, Janssen KP, Chang BH, Li M, Hindie V, Chan L, Louvard D, Chambon P, Metzger D, Robine S. 2004. Tissue‐specific and inducible Cre‐mediated recombination in the gut epithelium. Genesis 39: 186 – 193.en_US
dc.identifier.citedreferenceEngreitz JM, Daigle BJ Jr., Marshall JJ, Altman RB. 2010. Independent component analysis: Mining microarray data for fundamental human gene expression modules. J Biomed Inform 43: 932 – 944.en_US
dc.identifier.citedreferenceFurness JB. 2006. The enteric nervous system. Malden, Mass.: Blackwell Pub. xiii, p 274.en_US
dc.identifier.citedreferenceGabella G. 1971. Glial cells in the myenteric plexus. Z Naturforsch B 26: 244 – 245.en_US
dc.identifier.citedreferenceGabella G. 1972. Fine structure of the myenteric plexus in the guinea‐pig ileum. J Anat 111: 69 – 97.en_US
dc.identifier.citedreferenceGalau GA, Klein WH, Britten RJ, Davidson EH. 1977. Significance of rare mRNA sequences in liver. Arch Biochem Biophys 179: 584 – 599.en_US
dc.identifier.citedreferenceGarbay B, Heape AM, Sargueil F, Cassagne C. 2000. Myelin synthesis in the peripheral nervous system. Prog Neurobiol 61: 267 – 304.en_US
dc.identifier.citedreferenceGarcia SB, Stopper H, Kannen V. 2014. The contribution of neuronal‐glial‐endothelial‐epithelial interactions to colon carcinogenesis. Cell Mol Life Sci 71: 3191 – 3197.en_US
dc.identifier.citedreferenceGershon MD, Rothman TP. 1991. Enteric glia. Glia 4: 195 – 204.en_US
dc.identifier.citedreferenceGomez‐Casati ME, Murtie J, Taylor B, Corfas G. 2010. Cell‐specific inducible gene recombination in postnatal inner ear supporting cells and glia. J Assoc Res Otolaryngol 11: 19 – 26.en_US
dc.identifier.citedreferenceGulbransen BD, Sharkey KA. 2012. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 9: 625 – 632.en_US
dc.identifier.citedreferenceHanani M, Reichenbach A. 1994. Morphology of horseradish peroxidase (HRP)‐injected glial cells in the myenteric plexus of the guinea‐pig. Cell Tissue Res 278: 153 – 160.en_US
dc.identifier.citedreferenceHarauz G, Boggs JM. 2013. Myelin management by the 18.5‐kDa and 21.5‐kDa classic myelin basic protein isoforms. J Neurochem 125: 334 – 361.en_US
dc.identifier.citedreferenceHawrylycz MJ, Lein ES, Guillozet‐Bongaarts AL, Shen EH, Ng L, Miller JA, van de Lagemaat LN, Smith KA, Ebbert A, Riley ZL, et al. 2012. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489: 391 – 399.en_US
dc.identifier.citedreferenceHenning SJ. 1981. Postnatal development: Coordination of feeding, digestion, and metabolism. Am J Physiol 241: G199 – 214.en_US
dc.identifier.citedreferenceHoff S, Zeller F, von Weyhern CW, Wegner M, Schemann M, Michel K, Ruhl A. 2008. Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti‐Sox8/9/10 antibody. J Comp Neurol 509: 356 – 371.en_US
dc.identifier.citedreferenceJessen KR, Mirsky R. 1980. Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature 286: 736 – 737.en_US
dc.identifier.citedreferenceJessen KR, Mirsky R. 1983. Astrocyte‐like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J Neurosci 3: 2206 – 2218.en_US
dc.identifier.citedreferenceJessen KR, Mirsky R. 2005. The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6: 671 – 682.en_US
dc.identifier.citedreferenceKarim SA, Barrie JA, McCulloch MC, Montague P, Edgar JM, Kirkham D, Anderson TJ, Nave KA, Griffiths IR, McLaughlin M. 2007. PLP overexpression perturbs myelin protein composition and myelination in a mouse model of Pelizaeus‐Merzbacher disease. Glia 55: 341 – 351.en_US
dc.identifier.citedreferenceLangmead B, Salzberg SL. 2012. Fast gapped‐read alignment with Bowtie 2. Nat Methods 9: 357 – 359.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.