Multiple testing for neuroimaging via hidden Markov random field

Show simple item record

dc.contributor.author Shu, Hai en_US
dc.contributor.author Nan, Bin en_US
dc.contributor.author Koeppe, Robert en_US
dc.date.accessioned 2015-10-07T20:43:10Z
dc.date.available 2016-10-10T14:50:23Z en
dc.date.issued 2015-09 en_US
dc.identifier.citation Shu, Hai; Nan, Bin; Koeppe, Robert (2015). "Multiple testing for neuroimaging via hidden Markov random field." Biometrics 71(3): 741-750. en_US
dc.identifier.issn 0006-341X en_US
dc.identifier.issn 1541-0420 en_US
dc.identifier.uri http://hdl.handle.net/2027.42/113759
dc.publisher Wiley Periodicals, Inc. en_US
dc.subject.other Ising model en_US
dc.subject.other Local significance index en_US
dc.subject.other Penalized likelihood en_US
dc.subject.other Generalized expectation–maximization algorithm en_US
dc.subject.other False discovery rate en_US
dc.subject.other Alzheimer's disease en_US
dc.title Multiple testing for neuroimaging via hidden Markov random field en_US
dc.type Article en_US
dc.rights.robots IndexNoFollow en_US
dc.subject.hlbsecondlevel Mathematics en_US
dc.subject.hlbtoplevel Science en_US
dc.description.peerreviewed Peer Reviewed en_US
dc.description.bitstreamurl http://deepblue.lib.umich.edu/bitstream/2027.42/113759/1/biom12329-sup-0001-SuppData.pdf
dc.description.bitstreamurl http://deepblue.lib.umich.edu/bitstream/2027.42/113759/2/biom12329.pdf
dc.identifier.doi 10.1111/biom.12329 en_US
dc.identifier.source Biometrics en_US
dc.identifier.citedreference Nocedal, J. and Wright, S. ( 2006 ). Numerical Optimization, 2nd edition. New York: Springer. en_US
dc.identifier.citedreference Farcomeni, A. ( 2007 ). Some results on the control of the false discovery rate under dependence. Scandinavian Journal of Statistics 34, 275 – 297. en_US
dc.identifier.citedreference Garey, L. J. ( 2006 ). Brodmann's Localisation in the Cerebral Cortex. New York: Springer. en_US
dc.identifier.citedreference Geman, S. and Geman, D. ( 1984 ). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721 – 741. en_US
dc.identifier.citedreference Genovese, C. R., Lazar, N. A., and Nichols, T. ( 2002 ). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15, 870 – 878. en_US
dc.identifier.citedreference Genovese, C. and Wasserman, L. ( 2002 ). Operating characteristics and extensions of the false discovery rate procedure. Journal of the Royal Statistical Society, Series B 64, 499 – 517. en_US
dc.identifier.citedreference Genovese, C. and Wasserman, L. ( 2004 ). A stochastic process approach to false discovery control. The Annals of Statistics 32, 1035 – 1061. en_US
dc.identifier.citedreference Hoff, P. D. ( 2009 ). A First Course in Bayesian Statistical Methods. New York: Springer. en_US
dc.identifier.citedreference Huang, L., Goldsmith, J., Reiss, P. T., Reich, D. S., and Crainiceanu, C. M. ( 2013 ). Bayesian scalar‐on‐image regression with application to association between intracranial DTI and cognitive outcomes. NeuroImage 83, 210 – 223. en_US
dc.identifier.citedreference Johnson, T. D., Liu, Z., Bartsch, A. J., and Nichols, T. E. ( 2013 ). A Bayesian non‐parametric Potts model with application to pre‐surgical FMRI data. Statistical Methods in Medical Research 22, 364 – 381. en_US
dc.identifier.citedreference Magder, L. S. and Zeger, S. L., ( 1996 ). A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians. Journal of the American Statistical Association 91, 1141 – 1151. en_US
dc.identifier.citedreference Wu, W. B. ( 2008 ). On false discovery control under dependence. The Annals of Statistics 36, 364 – 380. en_US
dc.identifier.citedreference Ridolfi, A. ( 1997 ). Maximum likelihood estimation of hidden Markov model parameters, with application to medical image segmentation. Tesi di Laurea, Politecnico di Milano, Milan, Italy. en_US
dc.identifier.citedreference Roberts, G. O. and Smith A. F. M. ( 1994 ). Simple conditions for the convergence of the Gibbs sampler and Metropolis‐Hastings algorithms. Stochastic Processes and their Applications 49, 207 – 216. en_US
dc.identifier.citedreference Stoer, J. and Bulirsch, R. ( 2002 ). Introduction to Numerical Analysis, 3rd edition. New York: Springer. en_US
dc.identifier.citedreference Storey, J. D. ( 2003 ). The positive false discovery rate: A Bayesian interpretation and the q‐value. The Annals of Statistics 31, 2013 – 2035. en_US
dc.identifier.citedreference Sun, W. and Cai, T. T. ( 2007 ). Oracle and adaptive compound decision rules for false discovery rate control. Journal of the American Statistical Association 102, 901 – 912. en_US
dc.identifier.citedreference Sun, W. and Cai, T. T. ( 2009 ). Large‐scale multiple testing under dependence. Journal of the Royal Statistical Society, Series B 71, 393 – 424. en_US
dc.identifier.citedreference Wei, Z., Sun, W., Wang, K., and Hakonarson, H. ( 2009 ). Multiple testing in genome‐wide association studies via hidden Markov models. Bioinformatics 25, 2802 – 2808. en_US
dc.identifier.citedreference Winkler, G. ( 2003 ). Image Analysis, Random Fields and Markov Chain Monte Carlo Methods, 2nd edition. New York: Springer. en_US
dc.identifier.citedreference Zhang, C, Fan, J., and Yu, T. ( 2011 ). Multiple testing via FDR_L for large‐scale image data. The Annals of Statistics 39, 613 – 642. en_US
dc.identifier.citedreference Zhang, X., Johnson, T. D., Little, R. J. A., and Cao, Y. ( 2008 ). Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation. The Annals of Applied Statistics 2, 736 – 755. en_US
dc.identifier.citedreference Benjamini, Y. and Hochberg, Y. ( 1995 ). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289 – 300. en_US
dc.identifier.citedreference Benjamini, Y. and Hochberg, Y. ( 2000 ). On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 25, 60 – 83. en_US
dc.identifier.citedreference Welch, B. L. ( 1947 ). The generalization of ‘Student's’ problem when several different population variances are involved. Biometrika 34, 28 – 35. en_US
dc.identifier.citedreference Benjamini, Y. and Yekutieli, D. ( 2001 ). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165 – 1188. en_US
dc.identifier.citedreference Booth, J. G. and Hobert, J. P. ( 1999 ). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B 61, 265 – 285. en_US
dc.identifier.citedreference Bremaud, P. ( 1999 ). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. New York: Springer. en_US
dc.identifier.citedreference Cai, T. and Sun, W. ( 2009 ). Simultaneous testing of grouped hypotheses: Finding needles in multiple haystacks. Journal of the American Statistical Association 104, 1467 – 1481. en_US
dc.identifier.citedreference Chandgotia, N., Han, G., Marcus, B., Meyerovitch, T., and Pavlov, R. ( 2014 ). One‐dimensional Markov random fields, Markov chains and topological Markov fields. Proceedings of the American Mathematical Society 142, 227 – 242. en_US
dc.identifier.citedreference Chen, J., Tan, X., and Zhang, R. ( 2008 ). Inference for normal mixtures in mean and variance. Statistica Sinica 18, 443 – 465. en_US
dc.identifier.citedreference Chumbley, J. R. and Friston, K. J. ( 2009 ). False discovery rate revisited: FDR and topological inference using Gaussian random fields. NeuroImage 44, 62 – 70. en_US
dc.identifier.citedreference Chumbley, J., Worsley, K., Flandin, G., and Friston, K. ( 2010 ). Topological FDR for neuroimaging. NeuroImage 49, 3057 – 3064. en_US
dc.identifier.citedreference Ciuperca, G., Ridolfi, A., and Idier, J. ( 2003 ). Penalized maximum likelihood estimator for normal mixtures. Scandinavian Journal of Statistics 30, 45 – 59. en_US
dc.identifier.citedreference Dabney, A. and Storey, J. D. ( 2014 ). qvalue: Q‐value estimation for false discovery rate control. R package version 1.36.0. en_US
dc.identifier.citedreference Dempster, A. P., Laird, N. M., and Rubin, D. B. ( 1977 ). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1 – 38. en_US
dc.identifier.citedreference Efron, B. ( 2004 ). Large‐scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal of the American Statistical Association 99, 96 – 104. en_US
dc.owningcollname Interdisciplinary and Peer-Reviewed
 Show simple item record

This item appears in the following Collection(s)


Search Deep Blue

Advanced Search

Browse by

My Account

Information

Available Now


MLibrary logo