Show simple item record

Nuclear respiratory factor 2 induces SIRT3 expression

dc.contributor.authorSatterstrom, F. Kyleen_US
dc.contributor.authorSwindell, William R.en_US
dc.contributor.authorLaurent, Gaëlleen_US
dc.contributor.authorVyas, Sejalen_US
dc.contributor.authorBulyk, Martha L.en_US
dc.contributor.authorHaigis, Marcia C.en_US
dc.date.accessioned2015-10-07T20:43:10Z
dc.date.available2016-12-01T14:33:05Zen
dc.date.issued2015-10en_US
dc.identifier.citationSatterstrom, F. Kyle; Swindell, William R.; Laurent, Gaëlle ; Vyas, Sejal; Bulyk, Martha L.; Haigis, Marcia C. (2015). "Nuclear respiratory factor 2 induces SIRT3 expression." Aging Cell 14(5): 818-825.en_US
dc.identifier.issn1474-9718en_US
dc.identifier.issn1474-9726en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113760
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSIRT3en_US
dc.subject.othercalorie restrictionen_US
dc.subject.otherdietary restrictionen_US
dc.subject.othermicroarray analysisen_US
dc.subject.othernuclear respiratory factor 2en_US
dc.titleNuclear respiratory factor 2 induces SIRT3 expressionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113760/1/acel12360-sup-0001-FigS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113760/2/acel12360.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113760/3/acel12360-sup-0002-FigS2.pdf
dc.identifier.doi10.1111/acel.12360en_US
dc.identifier.sourceAging Cellen_US
dc.identifier.citedreferenceSatterstrom FK, Haigis MC ( 2014 ) Luciferase‐based reporter to monitor the transcriptional activity of the SIRT3 promoter. Methods Enzymol. 543, 141 – 163.en_US
dc.identifier.citedreferenceMootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, Yang W, Altshuler D, Puigserver P, Patterson N, Willy PJ, Schulman IG, Heyman RA, Lander ES, Spiegelman BM ( 2004 ) Errα and Gabpa/b specify PGC‐1α‐dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl. Acad. Sci. U. S. A. 101, 6570 – 6575.en_US
dc.identifier.citedreferenceOngwijitwat S, Wong‐Riley MT ( 2005 ) Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear‐encoded cytochrome c oxidase subunits in neurons? Gene 360, 65 – 77.en_US
dc.identifier.citedreferencePagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK ( 2008 ) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112 – 123.en_US
dc.identifier.citedreferencePortales‐Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, Yusuf D, Lenhard B, Wasserman WW, Sandelin A ( 2010 ) JASPAR 2010: the greatly expanded open‐access database of transcription factor binding profiles. Nucleic Acids Res. 38, D105 – D110.en_US
dc.identifier.citedreferenceQiu X, Brown K, Hirschey MD, Verdin E, Chen D ( 2010 ) Calorie restriction reduces oxidative stress by SIRT3‐mediated SOD2 activation. Cell Metab. 12, 662 – 667.en_US
dc.identifier.citedreferenceRen W, Guo J, Jiang F, Lu J, Ding Y, Li A, Liang X, Jia W ( 2014 ) CCAAT/enhancer‐binding protein α is a crucial regulator of human fat mass and obesity associated gene transcription and expression. Biomed. Res. Int. 2014, 406909.en_US
dc.identifier.citedreferenceRistevski S, O'Leary DA, Thornell AP, Owen MJ, Kola I, Hertzog PJ ( 2004 ) The ETS transcription factor GABPalpha is essential for early embryogenesis. Mol. Cell. Biol. 24, 5844 – 5849.en_US
dc.identifier.citedreferenceRosmarin AG, Resendes KK, Yang Z, McMillan JN, Fleming SL ( 2004 ) GA‐binding protein transcription factor: a review of GABP as an integrator of intracellular signaling and protein‐protein interactions. Blood Cells Mol. Dis. 32, 143 – 154.en_US
dc.identifier.citedreferenceScarpulla RC ( 2002 ) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim. Biophys. Acta 1576, 1 – 14.en_US
dc.identifier.citedreferenceSchreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A ( 2003 ) The transcriptional coactivator PGC‐1 regulates the expression and activity of the orphan nuclear receptor estrogen‐related receptor alpha (ERRalpha). J. Biol. Chem. 278, 9013 – 9018.en_US
dc.identifier.citedreferenceShi T, Wang F, Stieren E, Tong Q ( 2005 ) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280, 13560 – 13567.en_US
dc.identifier.citedreferenceShimazu T, Hirschey MD, Hua L, Dittenhafer‐Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM, Jacobson MP, Verdin E ( 2010 ) SIRT3 deacetylates mitochondrial 3‐hydroxy‐3‐methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 12, 654 – 661.en_US
dc.identifier.citedreferenceSomeya S, Yamasoba T, Weindruch R, Prolla TA, Tanokura M ( 2007 ) Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis. Neurobiol. Aging 28, 1613 – 1622.en_US
dc.identifier.citedreferenceSomeya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA ( 2010 ) Sirt3 mediates reduction of oxidative damage and prevention of age‐related hearing loss under caloric restriction. Cell 143, 802 – 812.en_US
dc.identifier.citedreferenceStreeper RS, Grueter CA, Salomonis N, Cases S, Levin MC, Koliwad SK, Zhou P, Hirschey MD, Verdin E, Farese RV Jr ( 2012 ) Deficiency of the lipid synthesis enzyme, DGAT1, extends longevity in mice. Aging (Albany, NY) 4, 13 – 27.en_US
dc.identifier.citedreferenceTakahashi K, Hayashi N, Shimokawa T, Umehara N, Kaminogawa S, Ra C ( 2008 ) Cooperative regulation of Fc receptor gamma‐chain gene expression by multiple transcription factors, including Sp1, GABP, and Elf‐1. J. Biol. Chem. 283, 15134 – 15141.en_US
dc.identifier.citedreferenceTao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, Olivier AK, Spitz DR, Gius D ( 2010 ) Sirt3‐mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 40, 893 – 904.en_US
dc.identifier.citedreferenceVassilopoulos A, Pennington JD, Andresson T, Rees DM, Bosley AD, Fearnley IM, Ham A, Flynn CR, Hill S, Rose KL, Kim HS, Deng CX, Walker JE, Gius D ( 2014 ) SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient‐ and exercise‐induced stress. Antioxid. Redox Signal. 21, 551 – 564.en_US
dc.identifier.citedreferenceVirbasius JV, Scarpulla RC ( 1991 ) Transcriptional activation through ETS domain binding sites in the cytochrome c oxidase subunit IV gene. Mol. Cell. Biol. 11, 5631 – 5638.en_US
dc.identifier.citedreferenceVirbasius JV, Virbasius CA, Scarpulla RC ( 1993 ) Identity of GABP with NRF‐2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev. 7, 380 – 392.en_US
dc.identifier.citedreferenceWarner JB, Philippakis AA, Jaeger SA, He FS, Lin J, Bulyk ML ( 2008 ) Systematic identification of mammalian regulatory motifs' target genes and functions. Nat. Methods 5, 347 – 353.en_US
dc.identifier.citedreferenceYang ZF, Drumea K, Mott S, Wang J, Rosmarin AG ( 2014 ) GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis. Mol. Cell. Biol. 34, 3194 – 3201.en_US
dc.identifier.citedreferenceAhn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T ( 2008 ) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U. S. A. 105, 14447 – 14452.en_US
dc.identifier.citedreferenceAnderson RM, Weindruch R ( 2010 ) Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol. Metab. 21, 134 – 141.en_US
dc.identifier.citedreferenceBaldelli S, Aquilano K, Ciriolo MR ( 2013 ) Punctum on two different transcription factors regulated by PGC‐1α: nuclear factor erythroid‐derived 2‐like 2 and nuclear respiratory factor 2. Biochim. Biophys. Acta 1830, 4137 – 4146.en_US
dc.identifier.citedreferenceBarger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C, Allison DB, Saupe KW, Cartee GD, Weindruch R, Prolla TA ( 2008 ) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3, e2264.en_US
dc.identifier.citedreferenceBatchelor AH, Piper DE, de la Brousse FC, McKnight SL, Wolberger C ( 1998 ) The structure of GABPalpha/beta: an ETS domain‐ ankyrin repeat heterodimer bound to DNA. Science 279, 1037 – 1041.en_US
dc.identifier.citedreferenceBellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, Greco V, Maggiolini M, Feraco E, Mari V, Franceschi C, Passarino G, De Benedictis G ( 2005 ) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85, 258 – 263.en_US
dc.identifier.citedreferenceBellizzi D, Dato S, Cavalcante P, Covello G, Di Cianni F, Passarino G, Rose G, De Benedictis G ( 2007 ) Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13. Genomics 89, 143 – 150.en_US
dc.identifier.citedreferenceBruni F, Polosa PL, Gadaleta MN, Cantatore P, Roberti M ( 2010 ) Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication. J. Biol. Chem. 285, 3939 – 3948.en_US
dc.identifier.citedreferenceCollins PJ, Kobayashi Y, Nguyen L, Trinklein ND, Myers RM ( 2007 ) The ets‐related transcription factor GABP directs bidirectional transcription. PLoS Genet. 3, e208.en_US
dc.identifier.citedreferenceFinley LW, Haas W, Desquiret‐Dumas V, Wallace DC, Procaccio V, Gygi SP, Haigis MC ( 2011 ) Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 6, e23295.en_US
dc.identifier.citedreferenceFromm L, Rhode M ( 2004 ) Neuregulin‐1 induces expression of Egr‐1 and activates acetylcholine receptor transcription through an Egr‐1‐binding site. J. Mol. Biol. 339, 483 – 494.en_US
dc.identifier.citedreferenceGalvagni F, Capo S, Oliviero S ( 2001 ) Sp1 and Sp3 physically interact and co‐operate with GABP for the activation of the utrophin promoter. J. Mol. Biol. 306, 985 – 996.en_US
dc.identifier.citedreferenceGautier L, Cope L, Bolstad BM, Irizarry RA ( 2004 ) affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307 – 315.en_US
dc.identifier.citedreferenceGérard MA, Krol A, Carbon P ( 2007 ) Transcription factor hStaf/ZNF143 is required for expression of the human TFAM gene. Gene 401, 145 – 153.en_US
dc.identifier.citedreferenceGiralt A, Hondares E, Villena JA, Ribas F, Díaz‐Delfín J, Giralt M, Iglesias R, Villarroya F ( 2011 ) Peroxisome proliferator‐activated receptor‐gamma coactivator‐1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J. Biol. Chem. 286, 16958 – 16966.en_US
dc.identifier.citedreferenceHakvoort TB, Moerland PD, Frijters R, Sokolović A, Labruyère WT, Vermeulen JL, Loren Ver, van Themaat E, Breit TM, Wittink FR, van Kampen AH, Verhoeven AJ, Lamers WH, Sokolović M ( 2011 ) Interorgan coordination of the murine adaptive response to fasting. J. Biol. Chem. 286, 16332 – 16343.en_US
dc.identifier.citedreferenceHallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM, Zhao S, Guan KL, Denu JM ( 2011 ) Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 41, 139 – 149.en_US
dc.identifier.citedreferenceHebert AS, Dittenhafer‐Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi‐Porter F, Roy S, Denu JM, Coon JJ ( 2013 ) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 49, 186 – 199.en_US
dc.identifier.citedreferenceHirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, Stevens RD, Li Y, Saha AK, Ruderman NB, Bain JR, Newgard CB, Farese RV Jr, Alt FW, Kahn CR, Verdin E ( 2010 ) SIRT3 regulates mitochondrial fatty‐acid oxidation by reversible enzyme deacetylation. Nature 464, 121 – 125.en_US
dc.identifier.citedreferenceHirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, Stančáková A, Goetzman E, Lam MM, Schwer B, Stevens RD, Muehlbauer MJ, Kakar S, Bass NM, Kuusisto J, Laakso M, Alt FW, Newgard CB, Farese RV Jr, Kahn CR, Verdin E ( 2011 ) SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177 – 190.en_US
dc.identifier.citedreferenceKong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F, Chang Y ( 2010 ) Sirtuin 3, a new target of PGC‐1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5, e11707.en_US
dc.identifier.citedreferenceLehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP ( 2000 ) Peroxisome proliferator‐activated receptor gamma coactivator‐1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 106, 847 – 856.en_US
dc.identifier.citedreferenceLombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese RV Jr, Weissman S, Verdin E, Schwer B ( 2007 ) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 24, 8807 – 8814.en_US
dc.identifier.citedreferenceMaere S, Heymans K, Kuiper M ( 2005 ) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448 – 3449.en_US
dc.identifier.citedreferenceMarinescu VD, Kohane IS, Riva A ( 2005 ) MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes. BMC Bioinformatics 6, 79.en_US
dc.identifier.citedreferenceMiller DM, Thomas SD, Islam A, Muench D, Sedoris K ( 2012 ) c‐Myc and cancer metabolism. Clin. Cancer Res. 18, 5546 – 5553.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.