Show simple item record

Measuring the Physiologic Properties of Oral Lesions Receiving Fractionated Photodynamic Therapy

dc.contributor.authorGallagher‐colombo, Shannon M.en_US
dc.contributor.authorQuon, Harryen_US
dc.contributor.authorMalloy, Kelly M.en_US
dc.contributor.authorAhn, Peter H.en_US
dc.contributor.authorCengel, Keith A.en_US
dc.contributor.authorSimone, Charles B.en_US
dc.contributor.authorChalian, Ara A.en_US
dc.contributor.authorO'Malley, Bert W.en_US
dc.contributor.authorWeinstein, Gregory S.en_US
dc.contributor.authorZhu, Timothy C.en_US
dc.contributor.authorPutt, Mary E.en_US
dc.contributor.authorFinlay, Jarod C.en_US
dc.contributor.authorBusch, Theresa M.en_US
dc.date.accessioned2015-10-07T20:43:14Z
dc.date.available2016-10-10T14:50:23Zen
dc.date.issued2015-09en_US
dc.identifier.citationGallagher‐colombo, Shannon M. ; Quon, Harry; Malloy, Kelly M.; Ahn, Peter H.; Cengel, Keith A.; Simone, Charles B.; Chalian, Ara A.; O'Malley, Bert W.; Weinstein, Gregory S.; Zhu, Timothy C.; Putt, Mary E.; Finlay, Jarod C.; Busch, Theresa M. (2015). "Measuring the Physiologic Properties of Oral Lesions Receiving Fractionated Photodynamic Therapy." Photochemistry and Photobiology 91(5): 1210-1218.en_US
dc.identifier.issn0031-8655en_US
dc.identifier.issn1751-1097en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113767
dc.description.abstractPhotodynamic therapy (PDT) can treat superficial, early‐stage disease with minimal damage to underlying tissues and without cumulative dose‐limiting toxicity. Treatment efficacy is affected by disease physiologic properties, but these properties are not routinely measured. We assessed diffuse reflectance spectroscopy (DRS) for the noninvasive, contact measurement of tissue hemoglobin oxygen saturation (StO2) and total hemoglobin concentration ([tHb]) in the premalignant or superficial microinvasive oral lesions of patients treated with 5‐aminolevulinic acid (ALA)‐PDT. Patients were enrolled on a Phase 1 study of ALA‐PDT that evaluated fluences of 50, 100, 150 or 200 J cm−2 delivered at 100 mW cm−2. To test the feasibility of incorporating DRS measurements within the illumination period, studies were performed in patients who received fractionated (two‐part) illumination that included a dark interval of 90–180 s. Using DRS, tissue oxygenation at different depths within the lesion could also be assessed. DRS could be performed concurrently with contact measurements of photosensitizer levels by fluorescence spectroscopy, but a separate noncontact fluorescence spectroscopy system provided continuous assessment of photobleaching during illumination to greater tissue depths. Results establish that the integration of DRS into PDT of early‐stage oral disease is feasible, and motivates further studies to evaluate its predictive and dosimetric value.Diffuse reflectance spectroscopy with a contact probe was employed as part of a fluorescence and reflectance spectroscopy system to measure the tissue hemoglobin oxygen saturation and hemoglobin content of lesions of premalignant or early microinvasive cancer of the oral cavity. Studies demonstrate the feasibility of incorporating these measurements into treatment with fractionated (two‐part) photodynamic therapy (PDT) using 5‐aminolevulinic acid. Patient‐specific differences in physiologic parameters were detectable at baseline and at times during and after PDT. Photobleaching of photosensitizer was measured by its fluorescence. Results establish the utility of rationally designed spectroscopy probes toward personalized dosimetry in PDT of oral disease.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleMeasuring the Physiologic Properties of Oral Lesions Receiving Fractionated Photodynamic Therapyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113767/1/php12475.pdf
dc.identifier.doi10.1111/php.12475en_US
dc.identifier.sourcePhotochemistry and Photobiologyen_US
dc.identifier.citedreferenceHenderson, B. W. and V. H. Fingar ( 1987 ) Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor. Cancer Res. 47, 3110 – 3114.en_US
dc.identifier.citedreferenceCurnow, A., B. W. McIlroy, M. J. Postle‐Hacon, A. J. MacRobert and S. G. Bown ( 1999 ) Light dose fractionation to enhance photodynamic therapy using 5‐aminolevulinic acid in the normal rat colon. Photochem. Photobiol. 69, 71 – 76.en_US
dc.identifier.citedreferenceMourant, J. R., T. Fuselier, J. Boyer, T. Johnson and I. J. Bigio ( 1997 ) Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms. Appl. Opt. 36, 948 – 957.en_US
dc.identifier.citedreferenceHull, E., M. G. Nichols and T. Foster ( 1998 ) Quantitative broadband near infrared spectroscopy of tissue‐simulating phantoms containing erythrocytes. Phys. Med. Biol. 43, 3381 – 3404.en_US
dc.identifier.citedreferenceBecker, T. L., A. D. Paquette, K. R. Keymel, B. W. Henderson and U. Sunar ( 2010 ) Monitoring blood flow responses during topical ALA‐PDT. Biomed. Opt. Express 2, 123 – 130.en_US
dc.identifier.citedreferenceDome, B., S. Paku, B. Somlai and J. Timar ( 2002 ) Vascularization of cutaneous melanoma involves vessel co‐option and has clinical significance. J. Pathol. 197, 355 – 362.en_US
dc.identifier.citedreferenceStucker, M., A. Struk, P. Altmeyer, M. Herde, H. Baumgartl and D. W. Lubbers ( 2002 ) The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. J. Physiol. 538, 985 – 994.en_US
dc.identifier.citedreferenceHamada, Y., H. Utahashi and K. Aoki ( 2002 ) Physiological gas exchange in the middle ear cavity. Int. J. Pediatr. Otorhinolaryngol. 64, 41 – 49.en_US
dc.identifier.citedreferenceMallidi, S., S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis and T. Hasan ( 2014 ) Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5‐aminolevulinic acid photodynamic therapy induced clinical erythema. J. Biomed. Opt. 19, 028001.en_US
dc.identifier.citedreferenceTyrrell, J. S., S. M. Campbell and A. Curnow ( 2010 ) The relationship between protoporphyrin IX photobleaching during real‐time dermatological methyl‐aminolevulinate photodynamic therapy (MAL‐PDT) and subsequent clinical outcome. Lasers Surg. Med. 42, 613 – 619.en_US
dc.identifier.citedreferenceWang, K. K.‐H., J. Finlay, T. M. Busch, S. Hahn and T. C. Zhu ( 2010 ) Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling. J. Biophotonics 3, 304 – 318.en_US
dc.identifier.citedreferenceWang, K. K.‐H., S. Mitra and T. H. Foster ( 2008 ) Photodynamic dose does not correlate with long‐term tumor response to mTHPC‐PDT performed at several drug‐light intervals. Med. Phys. 35, 3518.en_US
dc.identifier.citedreferenceAmelink, A., H. J. Sterenborg, J. L. Roodenburg and M. J. Witjes ( 2011 ) Non‐invasive measurement of the microvascular properties of non‐dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy. Oral Oncol. 47, 1165 – 1170.en_US
dc.identifier.citedreferenceAmelink, A., O. P. Kaspers, H. J. Sterenborg, J. E. van der Wal, J. L. Roodenburg and M. J. Witjes ( 2008 ) Non‐invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy. Oral Oncol. 44, 65 – 71.en_US
dc.identifier.citedreferenceSchwarz, R. A., W. Gao, D. Daye, M. D. Williams, R. Richards‐Kortum and A. M. Gillenwater ( 2008 ) Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth‐sensitive fiber‐optic probe. Appl. Opt. 47, 825 – 834.en_US
dc.identifier.citedreferenceSchwarz, R. A., W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El‐Naggar, R. Richards‐Kortum and A. M. Gillenwater ( 2009 ) Noninvasive evaluation of oral lesions using depth‐sensitive optical spectroscopy. Cancer 115, 1669 – 1679.en_US
dc.identifier.citedreferenceSpeight, P. M. ( 2007 ) Update on oral epithelial dysplasia and progression to cancer. Head Neck Pathol. 1, 61 – 66.en_US
dc.identifier.citedreferenceCurnow, A., J. C. Haller and S. G. Bown ( 2000 ) Oxygen monitoring during 5‐aminolaevulinic acid induced photodynamic therapy in normal rat colon. Comparison of continuous and fractionated light regimes. J. Photochem. Photobiol. B 58, 149 – 155.en_US
dc.identifier.citedreferencevan Leeuwen‐van Zaane, F., H. S. de Bruijn, A. van der Ploeg‐van den Heuvel, H. J. Sterenborg and D. J. Robinson ( 2014 ) The effect of fluence rate on the acute response of vessel diameter and red blood cell velocity during topical 5‐aminolevulinic acid photodynamic therapy. Photodiagnosis Photodyn. Ther. 11, 71 – 81.en_US
dc.identifier.citedreferenceMiddelburg, T. A., H. S. de Bruijn, L. Tettero, A. van der Ploeg van den Heuvel, H. A. Neumann, E. R. de Haas and D. J. Robinson ( 2013 ) Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall. J. Photochem. Photobiol. B 126, 26 – 32.en_US
dc.identifier.citedreferenceWang, K. K., W. J. Cottrell, S. Mitra, A. R. Oseroff and T. H. Foster ( 2009 ) Simulations of measured photobleaching kinetics in human basal cell carcinomas suggest blood flow reductions during ALA‐PDT. Lasers Surg. Med. 41, 686 – 696.en_US
dc.identifier.citedreferenceSchacht, V., R. M. Szeimies and C. Abels ( 2006 ) Photodynamic therapy with 5‐aminolevulinic acid induces distinct microcirculatory effects following systemic or topical application. Photochem. Photobiol. Sci. 5, 452 – 458.en_US
dc.identifier.citedreferenceJohansson, A., T. Johansson, M. S. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg and S. Andersson‐Engels ( 2006 ) In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors. J. Biomed. Opt. 11, 34029.en_US
dc.identifier.citedreferenceRobinson, D. J., H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown and W. M. Star ( 1999 ) Protoporphyrin IX fluorescence photobleaching during ALA‐mediated photodynamic therapy of UVB‐induced tumors in hairless mouse skin. Photochem. Photobiol. 69, 61 – 70.en_US
dc.identifier.citedreferenceSunar, U., D. J. Rohrbach, J. Morgan, N. Zeitouni and B. W. Henderson ( 2013 ) Quantification of PpIX concentration in basal cell carcinoma and squamous cell carcinoma models using spatial frequency domain imaging. Biomed. Opt. Express 4, 531 – 537.en_US
dc.identifier.citedreferenceKonecky, S. D., C. M. Owen, T. Rice, P. A. Valdés, K. Kolste, B. C. Wilson, F. Leblond, D. W. Roberts, K. D. Paulsen and B. J. Tromberg ( 2012 ) Spatial frequency domain tomography of protoporphyrin IX fluorescence in preclinical glioma models. J. Biomed. Opt. 17, 056008.en_US
dc.identifier.citedreferenceSunar, U. ( 2013 ) Monitoring photodynamic therapy of head and neck malignancies with optical spectroscopies. World J. Clin. Cases 1, 96 – 105.en_US
dc.identifier.citedreferenceQuon, H., C. E. Grossman, J. C. Finlay, T. C. Zhu, C. S. Clemmens, K. M. Malloy and T. M. Busch ( 2011 ) Photodynamic th erapy in the management of pre‐malignant head and neck mucosal dysplasia and microinvasive carcinoma. Photodiagnosis Photodyn. Ther. 8, 75 – 85.en_US
dc.identifier.citedreferenceJemal, A., F. Bray, M. M. Center, J. Ferlay, E. Ward and D. Forman ( 2011 ) Global cancer statistics. CA Cancer J. Clin. 61, 69 – 90.en_US
dc.identifier.citedreference( based on November 2013 SEER data submission, posted to the SEER web site, April 2014. ) SEER Cancer Statistics Review, 1975–2011. Available at: http://seer.cancer.gov/csr/1975_2011/. Accessed on 23 April 2014.en_US
dc.identifier.citedreferenceBiel, M. A. ( 2010 ) Photodynamic therapy of head and neck cancers. Methods Mol. Biol. 635, 281 – 293.en_US
dc.identifier.citedreferenceAgostinis, P., K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J. Golab ( 2011 ) Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61, 250 – 281.en_US
dc.identifier.citedreferenceBusch, T. M. ( 2006 ) Local physiological changes during photodynamic therapy. Lasers Surg. Med. 38, 494 – 499.en_US
dc.identifier.citedreferenceMilstein, D. M., A. M. van Kuijen, M. P. Copper, B. Karakullukcu, I. B. Tan, J. A. Lindeboom, W. J. Fokkens and C. Ince ( 2012 ) Monitoring microcirculatory alterations in oral squamous cell carcinoma following photodynamic therapy. Photodiagnosis Photodyn. Ther. 9, 69 – 75.en_US
dc.identifier.citedreferenceWang, H. W., M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh and T. M. Busch ( 2004 ) Treatment‐induced changes in tumor oxygenation predict photodynamic therapy outcome. Cancer Res. 64, 7553 – 7561.en_US
dc.identifier.citedreferencePogue, B. W., J. A. O'Hara, I. A. Goodwin, C. J. Wilmot, G. P. Fournier, A. R. Akay and H. Swartz ( 2002 ) Tumor PO(2) changes during photodynamic therapy depend upon photosensitizer type and time after injection. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132, 177 – 184.en_US
dc.identifier.citedreferenceWilson, B. and M. Patterson ( 2008 ) The physics, biophysics and technology of photodynamic therapy. Phys. Med. Biol. 53, 61 – 109.en_US
dc.identifier.citedreferenceFinlay, J. C. and T. H. Foster ( 2004 ) Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady‐state diffuse reflectance at a single, short source‐detector separation. Med. Phys. 31, 1949 – 1959.en_US
dc.identifier.citedreferenceDong, J., H. J. Toh, P. S. Thong, C. S. Tee, R. Bi, K. C. Soo and K. Lee ( 2014 ) Hemodynamic monitoring of Chlorin e6‐mediated photodynamic therapy using diffuse optical measurements. J. Photochem. Photobiol. B 140, 163 – 172.en_US
dc.identifier.citedreferenceZhou, X., B. W. Pogue, B. Chen, E. Demidenko, R. Joshi, J. Hoopes and T. Hasan ( 2006 ) Pretreatment photosensitizer dosimetry reduces variation in tumor response. Int. J. Radiat. Oncol. Biol. Phys. 64, 1211 – 1220.en_US
dc.identifier.citedreferenceWilson, B., M. Patterson and L. Lilge ( 1997 ) Implicit and explicit dosimetry in photodynamic therapy: a new paradgm. Lasers Surg. Med. 12, 182 – 199.en_US
dc.identifier.citedreferenceRobinson, D. J., H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown and W. M. Star ( 1998 ) Fluorescence photobleaching of ALA‐induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect. Photochem. Photobiol. 67, 140 – 149.en_US
dc.identifier.citedreferenceFinlay, J. C., D. L. Conover, E. L. Hull and T. H. Foster ( 2001 ) Porphyrin bleaching and PDT‐induced spectral changes are irradiance dependent in ALA‐sensitized normal rat skin in vivo. Photochem. Photobiol. 73, 54 – 63.en_US
dc.identifier.citedreferenceCottrell, W. J., A. D. Paquette, K. R. Keymel, T. H. Foster and A. R. Oseroff ( 2008 ) Irradiance‐dependent photobleaching and pain in delta‐aminolevulinic acid‐photodynamic therapy of superficial basal cell carcinomas. Clin. Cancer Res. 14, 4475 – 4483.en_US
dc.identifier.citedreferenceFinlay, J. C., T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch and S. M. Hahn ( 2006 ) Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium‐mediated photodynamic therapy. Photochem. Photobiol. 82, 1270 – 1280.en_US
dc.identifier.citedreferenceZhu, T. C., J. C. Finlay and S. M. Hahn ( 2005 ) Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in‐vivo human prostate during motexafin luteium‐mediated photodynamic therapy. J. Photochem. Photobiol. B 79, 231 – 241.en_US
dc.identifier.citedreferenceWang, H.‐W., J. C. Finlay, K. Lee, T. C. Zhu, M. E. Putt, E. Glatstein, C. J. Koch, S. M. Evans, S. M. Hahn, T. M. Busch and A. G. Yodh ( 2007 ) Quantitative comparison of tissue oxygen and motexafin lutetium uptake by ex vivo and noninvasive in vivo techniques in patients with intraperitoneal carcinomatosis. J. Biomed. Opt. 12, 034023.en_US
dc.identifier.citedreferenceSharikova, A. V., J. C. Finlay, X. Liang and T. C. Zhu ( 2013 ) PDT dose dosimetry for pleural photodynamic therapy. Proc. SPIE. 8568, pii: 856817.en_US
dc.identifier.citedreferenceGrossman, C., T. Zhu, J. Finlay, A. Dimofte, K. Malloy, B. Jr O'Malley, G. Weinstein, T. M. Busch and H. Quon ( 2010 ) Targeted laryngeal photodynamic therapy with a balloon diffusing light source. Photodiagnosis Photodyn. Ther. 7, 158 – 161.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.