Show simple item record

High‐Indexed Pt3Fe Nanocatalysts and Their Enhanced Catalytic Performance in Dual Organic Reactions

dc.contributor.authorWang, Chenyuen_US
dc.contributor.authorLin, Cuikunen_US
dc.contributor.authorZhao, Boen_US
dc.contributor.authorZhang, Lihuaen_US
dc.contributor.authorKumbhar, Amaren_US
dc.contributor.authorFan, Guangyinen_US
dc.contributor.authorSun, Kaien_US
dc.contributor.authorZhang, Junen_US
dc.contributor.authorChen, Shuangen_US
dc.contributor.authorFang, Jiyeen_US
dc.date.accessioned2015-10-07T20:43:17Z
dc.date.available2016-10-10T14:50:23Zen
dc.date.issued2015-09en_US
dc.identifier.citationWang, Chenyu; Lin, Cuikun; Zhao, Bo; Zhang, Lihua; Kumbhar, Amar; Fan, Guangyin; Sun, Kai; Zhang, Jun; Chen, Shuang; Fang, Jiye (2015). "High‐Indexed Pt3Fe Nanocatalysts and Their Enhanced Catalytic Performance in Dual Organic Reactions." ChemNanoMat 1(5): 331-337.en_US
dc.identifier.issn2199-692Xen_US
dc.identifier.issn2199-692Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113773
dc.description.abstractThe synthesis of noble metal nanocrystals terminated with high‐index facets has received increasing attention due to the remarkable improvement in their catalytic performance. Introducing a transition metal to noble metals (bimetallic nanocrystals) could result in a reduced cost and potentially improve properties. Keeping in mind both of these advantages, we have developed a new synthetic approach to fabricate size‐controlled Pt3Fe concave nanocubes using a high‐temperature organic solution system containing oleylamine and oleic acid. It further demonstrates that the particle size and concavity could be controlled by a number of parameters such as the ratio of oleylamine and oleic acid, the physicochemical properties of the metal carbonyl, the metal valence in the precursor, and the ratio of metal precursors. Catalytic tests show that the high‐index‐surface‐terminated ≈12 nm Pt3Fe concave nanocubes exhibit superior performance in both the hydrogenation of styrene and reduction of 4‐nitrophenol in comparison with their counterparts.Monodisperse Pt3Fe concave nanocubes with high‐index surfaces and a combination of sub‐facets {hk0} were synthesized using a high‐temperature solution approach, and show the highest turnover frequency for the hydrogenation of styrene and a promoted reaction rate for 4‐nitrophenol reduction in comparison with their counterparts.en_US
dc.publisherCRC pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherbimetallic nanocrystalsen_US
dc.subject.otherhydrogenation catalysisen_US
dc.subject.othershape controlen_US
dc.subject.otherstructure dependenceen_US
dc.subject.otherhigh-index facetsen_US
dc.titleHigh‐Indexed Pt3Fe Nanocatalysts and Their Enhanced Catalytic Performance in Dual Organic Reactionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113773/1/cnma201500048-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113773/2/cnma201500048.pdf
dc.identifier.doi10.1002/cnma.201500048en_US
dc.identifier.sourceChemNanoMaten_US
dc.identifier.citedreferenceZ. Quan, W. S. Loc, C. Lin, Z. Luo, K. Yang, Y. Wang, H. Wang, Z. Wang, J. Fang, Nano Lett. 2012, 12, 4409 – 4413.en_US
dc.identifier.citedreferenceJ. Wu, J. Zhu, M. Zhou, Y. Hou, S. Gao, CrystEngComm 2012, 14, 7572 – 7575;en_US
dc.identifier.citedreferenceS. W. Chou, C. L. Zhu, S. Neeleshwar, C. L. Chen, Y. Y. Chen, C. C. Chen, Chem. Mater. 2009, 21, 4955 – 4961.en_US
dc.identifier.citedreferenceJ. Zhang, J. Fang, J. Am. Chem. Soc. 2009, 131, 18543 – 18547.en_US
dc.identifier.citedreferenceY. Yin, A. P. Alivisatos, Nature 2005, 437, 664 – 670.en_US
dc.identifier.citedreferenceB. Lim, X. Lu, M. Jiang, P. H. Camargo, E. C. Cho, E. P. Lee, Y. Xia, Nano Lett. 2008, 8, 4043 – 4047.en_US
dc.identifier.citedreferenceD. Xu, Z. Liu, H. Yang, Q. Liu, J. Zhang, J. Fang, S. Zou, K. Sun, Angew. Chem. Int. Ed. 2009, 48, 4217 – 4221; Angew. Chem. 2009, 121, 4281 – 4285.en_US
dc.identifier.citedreferenceN. S. Porter, H. Wu, Z. Quan, J. Fang, Acc. Chem. Res. 2013, 46, 1867 – 1877.en_US
dc.identifier.citedreferenceR. Viswanatha, D. D. Sarma in Nanomaterials Chemistry, Wiley-VCH, 2007, pp.  139 – 170.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceX. Xia, S. Xie, M. Liu, H.-C. Peng, N. Lu, J. Wang, M. J. Kim, Y. Xia, Proc. Natl. Acad. Sci. USA 2013, 110, 6669 – 6673;en_US
dc.identifier.citedreferenceJ. Scherzer, A. J. Gruia, Hydrocracking science and technology, Vol. 66, CRC Press, 1996;en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceA. X. Yin, X. Q. Min, W. Zhu, W. C. Liu, Y.-W. Zhang, C. H. Yan, Chem. Eur. J. 2012, 18, 777 – 782;en_US
dc.identifier.citedreferenceY. Jiang, Y. Jia, J. Zhang, L. Zhang, H. Huang, Z. Xie, L. Zheng, Chem. Eur. J. 2013, 19, 3119 – 3124.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceP. N. Rylander in Ullmanns Encyclopedia of Industrial Chemistry, Wiley-VCH, 2000;en_US
dc.identifier.citedreferenceI. P. Freeman, in Ullmanns Encyclopedia of Industrial Chemistry, Wiley-VCH, 2000.en_US
dc.identifier.citedreferenceB. Veisz, Z. Király, L. Tóth, B. Pécz, Chem. Mater. 2002, 14, 2882 – 2888.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceG. A. Somorjai, Chemistry in two dimensions: surfaces, Vol. 290, Cornell University Press, Ithaca, 1981;en_US
dc.identifier.citedreferenceS. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Brückner, J. Radnik, H. Hofmeister, P. Claus, Catal. Today 2002, 72, 63 – 78.en_US
dc.identifier.citedreferenceW. Yu, M. D. Porosoff, J. G. Chen, Chem. Rev. 2012, 112, 5780 – 5817.en_US
dc.identifier.citedreferenceZ. Guo, Y. Chen, L. Li, X. Wang, G. L. Haller, Y. Yang, J. Catal. 2010, 276, 314 – 326.en_US
dc.identifier.citedreferenceY. C. Chang, D. H. Chen, J. Hazard. Mater. 2009, 165, 664 – 669.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceC. Y. Chiu, P. J. Chung, K. U. Lao, C. W. Liao, M. H. Huang, J. Phys. Chem. C 2012, 116, 23757 – 23763;en_US
dc.identifier.citedreferenceS. K. Ghosh, M. Mandal, S. Kundu, S. Nath, T. Pal, Appl. Catal. A 2004, 268, 61 – 66;en_US
dc.identifier.citedreferenceS. Kundu, K. Wang, H. Liang, J. Phys. Chem. C 2009, 113, 5157 – 5163.en_US
dc.identifier.citedreferenceS. Wunder, F. Polzer, Y. Lu, Y. Mei, M. Ballauff, J. Phys. Chem. C 2010, 114, 8814 – 8820.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceL. N. Lewis, Chem. Rev. 1993, 93, 2693 – 2730;en_US
dc.identifier.citedreferenceN. Chen, W. E. Garwood, F. G. Dwyer, Shape selective catalysis in industrial applications, Vol. 65, CRC press, 1996;en_US
dc.identifier.citedreferenceU. Mueller, M. Schubert, O. Yaghi, G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, Handbook of Heterogeneous Catalysis, Vol. 1, Weinheim, 2008;en_US
dc.identifier.citedreferenceN. Semagina, L. Kiwi-Minsker, Catal. Rev. 2009, 51, 147 – 217.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceZ. L. Wang, J. Phys. Chem. B 2000, 104, 1153 – 1175;en_US
dc.identifier.citedreferenceA. R. Tao, S. Habas, P. Yang, Small 2008, 4, 310 – 325;en_US
dc.identifier.citedreferenceY. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed. 2009, 48, 60 – 103; Angew. Chem. 2009, 121, 62 – 108.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceN. Tian, Z. Y. Zhou, S. G. Sun, J. Phys. Chem. C 2008, 112, 19801 – 19817;en_US
dc.identifier.citedreferenceZ. Y. Zhou, N. Tian, J. T. Li, I. Broadwell, S. G. Sun, Chem. Soc. Rev. 2011, 40, 4167 – 4185;en_US
dc.identifier.citedreferenceZ. Quan, Y. Wang, J. Fang, Acc. Chem. Res. 2012, 46, 191 – 202;en_US
dc.identifier.citedreferenceH. Zhang, M. Jin, Y. Xia, Angew. Chem. Int. Ed. 2012, 51, 7656 – 7673; Angew. Chem. 2012, 124, 7774 – 7792.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceS. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. Yang, Nat. Mater. 2007, 6, 692 – 697;en_US
dc.identifier.citedreferenceL. Zhang, J. Zhang, Q. Kuang, S. Xie, Z. Jiang, Z. Xie, L. Zheng, J. Am. Chem. Soc. 2011, 133, 17114 – 17117;en_US
dc.identifier.citedreferenceH. Zhang, M. Jin, J. Wang, W. Li, P. H. Camargo, M. J. Kim, D. Yang, Z. Xie, Y. Xia, J. Am. Chem. Soc. 2011, 133, 6078 – 6089;en_US
dc.identifier.citedreferenceY. W. Lee, D. Kim, J. W. Hong, S. W. Kang, S. B. Lee, S. W. Han, Small 2013, 9, 660 – 665.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. Zhang, H. Yang, J. Fang, S. Zou, Nano Lett. 2010, 10, 638 – 644;en_US
dc.identifier.citedreferenceJ. Wu, A. Gross, H. Yang, Nano Lett. 2011, 11, 798 – 802;en_US
dc.identifier.citedreferenceJ. Zhang, H. Yang, B. Martens, Z. Luo, D. Xu, Y. Wang, S. Zou, J. Fang, Chem. Sci. 2012, 3, 3302 – 3306;en_US
dc.identifier.citedreferenceC. Cui, L. Gan, H. H. Li, S. H. Yu, M. Heggen, P. Strasser, Nano Lett. 2012, 12, 5885 – 5889.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceY. Wu, S. Cai, D. Wang, W. He, Y. Li, J. Am. Chem. Soc. 2012, 134, 8975 – 8981;en_US
dc.identifier.citedreferenceY. Wu, D. Wang, Z. Niu, P. Chen, G. Zhou, Y. Li, Angew. Chem. Int. Ed. 2012, 51, 12524 – 12528; Angew. Chem. 2012, 124, 12692 – 12696.en_US
dc.identifier.citedreferenceV. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Science 2007, 315, 493 – 497.en_US
dc.identifier.citedreferenceB. Lim, Y. Xia, Angew. Chem. Int. Ed. 2011, 50, 76 – 85; Angew. Chem. 2011, 123, 78 – 87.en_US
dc.identifier.citedreference en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.