Show simple item record

Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations

dc.contributor.authorDong, Chuanfeien_US
dc.contributor.authorBougher, Stephen W.en_US
dc.contributor.authorMa, Yingjuanen_US
dc.contributor.authorToth, Gaboren_US
dc.contributor.authorLee, Yunien_US
dc.contributor.authorNagy, Andrew F.en_US
dc.contributor.authorTenishev, Valeriyen_US
dc.contributor.authorPawlowski, Dave J.en_US
dc.contributor.authorCombi, Michael R.en_US
dc.contributor.authorNajib, Dalalen_US
dc.date.accessioned2015-11-12T21:03:37Z
dc.date.available2016-11-01T16:43:14Zen
dc.date.issued2015-09en_US
dc.identifier.citationDong, Chuanfei; Bougher, Stephen W.; Ma, Yingjuan; Toth, Gabor; Lee, Yuni; Nagy, Andrew F.; Tenishev, Valeriy; Pawlowski, Dave J.; Combi, Michael R.; Najib, Dalal (2015). "Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations." Journal of Geophysical Research: Space Physics 120(9): 7857-7872.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/115901
dc.description.abstractA comprehensive study of the solar wind interaction with the Martian upper atmosphere is presented. Three global models: the 3‐D Mars multifluid Block Adaptive Tree Solar‐wind Roe Upwind Scheme MHD code (MF‐MHD), the 3‐D Mars Global Ionosphere Thermosphere Model (M‐GITM), and the Mars exosphere Monte Carlo model Adaptive Mesh Particle Simulator (M‐AMPS) were used in this study. These models are one‐way coupled; i.e., the MF‐MHD model uses the 3‐D neutral inputs from M‐GITM and the 3‐D hot oxygen corona distribution from M‐AMPS. By adopting this one‐way coupling approach, the Martian upper atmosphere ion escape rates are investigated in detail with the combined variations of crustal field orientation, solar cycle, and Martian seasonal conditions. The calculated ion escape rates are compared with Mars Express observational data and show reasonable agreement. The variations in solar cycles and seasons can affect the ion loss by a factor of ∼3.3 and ∼1.3, respectively. The crustal magnetic field has a shielding effect to protect Mars from solar wind interaction, and this effect is the strongest for perihelion conditions, with the crustal field facing the Sun. Furthermore, the fraction of cold escaping heavy ionospheric molecular ions [(2+ and/or 2+)/Total] are inversely proportional to the fraction of the escaping (ionospheric and corona) atomic ion [O+/Total], whereas 2+ and 2+ ion escape fractions show a positive linear correlation since both ion species are ionospheric ions that follow the same escaping path.Key PointsStudy crustal field, solar cycle, and seasons on Mars' upper atmosphere ion escapeTo understand the long‐term evolution of Mars atmosphere over its historyTo support MAVEN spacecraft mission data analysis (2014–2016)en_US
dc.publisherClarendon Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othercrustal field orientationen_US
dc.subject.othersolar cycleen_US
dc.subject.otherseasonal variationsen_US
dc.subject.otherion escape from Mars upper atmosphereen_US
dc.subject.otherglobal one‐way couplingen_US
dc.subject.other3‐D multifluid MHD modelen_US
dc.titleSolar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115901/1/jgra52040.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115901/2/jgra52040_am.pdf
dc.identifier.doi10.1002/2015JA020990en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Holmström, H. Nilsson, Y. Futaana, R. Ramstad, M. Yamauchi, E. M. Dubinin, and M. Fraenz ( 2013 ), Solar cycle effects on the ion escape from Mars, Geophys. Res. Lett., 40, 6028 – 6032, doi: 10.1002/2013GL058154.en_US
dc.identifier.citedreferenceDong, C., S. W. Bougher, Y. Ma, G. Toth, A. F. Nagy, and D. Najib ( 2014 ), Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multifluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708 – 2715, doi: 10.1002/2014GL059515.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. J. Ma ( 2010 ), On the effect of the Martian crustal magnetic field on atmospheric erosion, Icarus, 206, 130 – 138.en_US
dc.identifier.citedreferenceFeldman, P. D., et al. ( 2011 ), Rosetta‐Alice observations of exospheric hydrogen and oxygen on Mars, Icarus, 214, 394 – 399.en_US
dc.identifier.citedreferenceGlocer, A., G. Tóth, Y. J. Ma, T. I. Gombosi, J. C. Zhang, and L. M. Kistler ( 2009 ), Multifluid Block‐Adaptive‐Tree Solar wind Roe‐type Upwind Scheme: Magnetospheric composition and dynamics during geomagnetic storms—Initial results, J. Geophys. Res., 114, A12203, doi: 10.1029/2009JA014418.en_US
dc.identifier.citedreferenceHaberle, R. M., M. M. Joshi, J. R. Murphy, J. R. Barnes, J. T. Schofield, G. Wilson, M. Lopez‐Valverde, J. L. Hollingsworth, A. F. C. Bridger, and J. Schaeffer ( 1999 ), General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res., 104, 8957 – 8974.en_US
dc.identifier.citedreferenceHarnett, E. M., and R. M. Winglee ( 2006 ), Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events, J. Geophys. Res., 111, A09213, doi: 10.1029/2006JA011724.en_US
dc.identifier.citedreferenceJohnson, R. E., and J. G. Luhmann ( 1998 ), Sputter contribution to the atmospheric corona on Mars, J. Geophys. Res., 103, 3649 – 3653.en_US
dc.identifier.citedreferenceKim, J., A. F. Nagy, J. L. Fox, and T. E. Cravens ( 1998 ), Solar cycle variability of hot oxygen atoms at Mars, J. Geophys. Res., 103 ( A12 ), 29,339 – 29,342, doi: 10.1029/98JA02727.en_US
dc.identifier.citedreferenceLee, Y., M. R. Combi, V. Tenishev, and S. W. Bougher ( 2013 ), Hot oxygen corona in Mars' upper thermosphere and exosphere: A comparison of results using the MGITM and MTGCM, AGU Fall Meeting Abstracts, P21A‐1703.en_US
dc.identifier.citedreferenceLee, Y., M. R. Combi, V. Tenishev, and S. W. Bougher ( 2014a ), Hot carbon corona in Mars' upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at equinox, J. Geophys. Res. Planets, 119, 905 – 924, doi: 10.1002/2013JE004552.en_US
dc.identifier.citedreferenceLee, Y., M. R. Combi, V. Tenishev, and S. W. Bougher ( 2014b ), Hot carbon corona in Mars' upper thermosphere and exosphere: 2. Solar cycle and seasonal variability, J. Geophys. Res. Planets, 119, 2487 – 2509, doi: 10.1002/2014JE004669.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, M. Fraenz, and E. M. Dubinin ( 2008 ), A comet‐like escape of ionospheric plasma from Mars, Geophys. Res. Lett., 35, L18203, doi: 10.1029/2008GL034811.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, E. M. Dubinin, and M. Fraenz ( 2009 ), Atmospheric origin of cold ion escape from Mars, Geophys. Res. Lett., 36, L17202, doi: 10.1029/2009GL039341.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Yamauchi, H. Nilsson, and D. Brain ( 2011 ), On the relation between plasma escape and the Martian crustal magnetic field, Geophys. Res. Lett., 38, L02102, doi: 10.1029/2010GL046019.en_US
dc.identifier.citedreferenceMa, Y. J., A. F. Nagy, I. V. Sokolov, and K. C. Hansen ( 2004 ), Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi: 10.1029/2003JA010367.en_US
dc.identifier.citedreferenceMa, Y. J., and A. F. Nagy ( 2007 ), Ion escape fluxes from Mars, Geophys. Res. Lett., 34, L08201, doi: 10.1029/2006GL029208.en_US
dc.identifier.citedreferenceMa, Y. J., X. Fang, C. T. Russell, A. F. Nagy, G. Toth, J. G. Luhmann, D. A. Brain, and C. Dong ( 2014 ), Effects of crustal field rotation on the solar wind plasma interaction with Mars, Geophys. Res. Lett., 41, 6563 – 6569, doi: 10.1002/2014GL060785.en_US
dc.identifier.citedreferenceModolo, R., G. M. Chanteur, and E. Dubinin ( 2012 ), Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF, Geophys. Res. Lett., 39, L01106, doi: 10.1029/2011GL049895.en_US
dc.identifier.citedreferenceNajib, D., A. F. Nagy, G. Tóth, and Y. J. Ma ( 2011 ), Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars, J. Geophys. Res., 116, A05204, doi: 10.1029/2010JA016272.en_US
dc.identifier.citedreferenceNilsson, H., N. J. Edberg, G. Stenberg, S. Barabash, M. Holmström, Y. Futaana, R. Lundin, and A. Fedorov ( 2011 ), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, 215, 475 – 484.en_US
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309.en_US
dc.identifier.citedreferenceRamstad, R., S. Barabash, Y. Futaana, H. Nilsson, X.‐D. Wang, and M. Holmström ( 2015 ), The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations, J. Geophys. Res. Planets, 120, 1298 – 1309, doi: 10.1002/2015JE004816.en_US
dc.identifier.citedreferenceRidley, A., Y. Deng, and G. Toth ( 2006 ), The global ionosphere‐thermosphere model, J. Atmos. Sol. Terr. Phys., 68, 839 – 864.en_US
dc.identifier.citedreferenceRiousset, J. A., C. S. Paty, R. J. Lillis, M. O. Fillingim, S. L. England, P. G. Withers, and J. P. M. Hale ( 2013 ), Three‐dimensional multifluid modeling of atmospheric electrodynamics in Mars' dynamo region, J. Geophys. Res. Space Physics, 118, 3647 – 3659, doi: 10.1002/jgra.50328.en_US
dc.identifier.citedreferenceRiousset, J. A., C. S. Paty, R. J. Lillis, M. O. Fillingim, S. L. England, P. G. Withers, and J. P. M. Hale ( 2014 ), Electrodynamics of the Martian dynamo region near magnetic cusps and loops, Geophys. Res. Lett., 41, 1119 – 1125, doi: 10.1002/2013GL059130.en_US
dc.identifier.citedreferenceSchunk, R. W., and A. F. Nagy ( 2009 ), Ionospheres, 2nd ed., Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceTenishev, V., and M. Combi ( 2008 ), A global kinetic model for cometary comae: The evolution of the coma of the Rosetta target comet Churyumov‐Gerasimenko throughout the mission, Astrophys. J., 685, 659 – 677.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870 – 903.en_US
dc.identifier.citedreferenceValeille, A., V. Tenishev, S. W. Bougher, M. R. Combi, and A. F. Nagy ( 2009 ), Three‐dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions, J. Geophys. Res., 114, E11005, doi: 10.1029/2009JE003388.en_US
dc.identifier.citedreferenceVerigin, M., et al. ( 1991 ), Ions of planetary origin in the Martian magnetosphere (Phobos 2/TAUS experiment), Planet. Space Sci., 39, 131 – 137.en_US
dc.identifier.citedreferenceAcuña, M. H., et al. ( 1999 ), Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment, Science, 284, 790 – 793.en_US
dc.identifier.citedreferenceArkani‐Hamed, J. ( 2001 ), A 50‐degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 106, 23,197 – 23,208.en_US
dc.identifier.citedreferenceBarabash, S., A. Fedorov, R. Lundin, and J. A. Sauvaud ( 2007 ), Martian atmospheric erosion rates., Science, 315, 501 – 503.en_US
dc.identifier.citedreferenceBird, G. A. ( 1994 ), Molecular Gas Dynamics and the Direct Simulation of Gas Flows, 2nd ed., Clarendon Press, Oxford.en_US
dc.identifier.citedreferenceBougher, S. W., S. Engel, R. G. Roble, and B. Foster ( 2000 ), Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices, J. Geophys. Res., 105, 17,669 – 17,692.en_US
dc.identifier.citedreferenceBougher, S. W., J. M. Bell, J. R. Murphy, M. A. Lopez‐Valverde, and P. G. Withers ( 2006 ), Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions, Geophys. Res. Lett., 33, L02203, doi: 10.1029/2005GL024059.en_US
dc.identifier.citedreferenceBougher, S. W., P.‐L. Blelly, M. R. Combi, J. L. Fox, I. Mueller‐Wodarg, A. Ridley, and R. G. Roble ( 2008 ), Neutral upper atmosphere and ionosphere modeling, Space Sci. Rev., 139, 107 – 141.en_US
dc.identifier.citedreferenceBougher, S. W., T. E. Cravens, J. Grebowsky, and J. Luhmann ( 2014 ), The aeronomy of Mars: Characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape, Space Sci. Rev., doi: 10.1007/s11214‐014‐0053‐7, in press.en_US
dc.identifier.citedreferenceBougher, S. W., D. J. Pawlowski, J. M. Bell, S. Nelli, T. McDunn, J. R. Murphy, M. Chizek, and A. Ridley ( 2015 ), Mars Global Ionosphere‐Thermosphere Model (M‐GITM): Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere, J. Geophys. Res. Planets, 120, 311 – 342, doi: 10.1002/2014JE004715.en_US
dc.identifier.citedreferenceBrain, D., et al. ( 2010 ), A comparison of global models for the solar wind interaction with Mars, Icarus, 206, 139 – 151.en_US
dc.identifier.citedreferenceBrain, D., et al. ( 2012 ), Comparison of global models for the escape of Martian atmospheric plasma, AGU Fall Meeting Abstracts, P13C‐1969.en_US
dc.identifier.citedreferenceBrecht, S. H., and S. A. Ledvina ( 2014a ), The role of the Martian crustal magnetic fields in controlling ionospheric loss, Geophys. Res. Lett., 41, 5340 – 5346, doi: 10.1002/2014GL060841.en_US
dc.identifier.citedreferenceBrecht, S. H., and S. A. Ledvina ( 2014b ), Hybrid particle code simulations of Mars: The role of assorted processes in ionospheric escape, AGU Fall Meeting Abstracts, P54A‐06.en_US
dc.identifier.citedreferenceCravens, T. E., J. U. Kozyra, A. F. Nagy, T. I. Gombosi, and M. Kurtz ( 1987 ), Electron impact ionization in the vicinity of comets, J. Geophys. Res., 92, 7341 – 7353.en_US
dc.identifier.citedreferenceCurry, S. M., M. W. Liemohn, X.‐H. Fang, Y.‐J. Ma, and J. Espley ( 2013 ), The influence of production mechanisms on pick‐up ion loss at Mars, J. Geophys. Res. Space Physics, 118, 554 – 569, doi: 10.1029/2012JA017665.en_US
dc.identifier.citedreferenceCurry, S. M., M. W. Liemohn, X.‐H. Fang, Y.‐J. Ma, J. Slavin, J. Espley, S. Bougher, and C. F. Dong ( 2014 ), Test particle comparison of heavy atomic and molecular ion distributions at Mars, J. Geophys. Res. Space Physics, 119, 2328 – 2344, doi: 10.1002/2013JA019221.en_US
dc.identifier.citedreferenceCurry, S. M., J. G. Luhmann, Y. Ma, M. W. Liemohn, C. Dong, and T. Hara ( 2015 ), Comparative pick‐up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape, Planet. Space Sci., 115, 35 – 47, doi: 10.1016/j.pss.2015.03.026.en_US
dc.identifier.citedreferencede Pater, I., and J. J. Lissauer ( 2010 ), Planetary Sciences, 2nd ed., pp. 5 – 6, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceDeng, Y., A. D. Richmond, A. J. Ridley, and H.‐L. Liu ( 2008 ), Assessment of the non‐hydrostatic effect on the upper atmosphere using a general circulation model (GCM), Geophys. Res. Lett., 35, L01104, doi: 10.1029/2007GL032182.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.