Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations
dc.contributor.author | Dong, Chuanfei | en_US |
dc.contributor.author | Bougher, Stephen W. | en_US |
dc.contributor.author | Ma, Yingjuan | en_US |
dc.contributor.author | Toth, Gabor | en_US |
dc.contributor.author | Lee, Yuni | en_US |
dc.contributor.author | Nagy, Andrew F. | en_US |
dc.contributor.author | Tenishev, Valeriy | en_US |
dc.contributor.author | Pawlowski, Dave J. | en_US |
dc.contributor.author | Combi, Michael R. | en_US |
dc.contributor.author | Najib, Dalal | en_US |
dc.date.accessioned | 2015-11-12T21:03:37Z | |
dc.date.available | 2016-11-01T16:43:14Z | en |
dc.date.issued | 2015-09 | en_US |
dc.identifier.citation | Dong, Chuanfei; Bougher, Stephen W.; Ma, Yingjuan; Toth, Gabor; Lee, Yuni; Nagy, Andrew F.; Tenishev, Valeriy; Pawlowski, Dave J.; Combi, Michael R.; Najib, Dalal (2015). "Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations." Journal of Geophysical Research: Space Physics 120(9): 7857-7872. | en_US |
dc.identifier.issn | 2169-9380 | en_US |
dc.identifier.issn | 2169-9402 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/115901 | |
dc.description.abstract | A comprehensive study of the solar wind interaction with the Martian upper atmosphere is presented. Three global models: the 3‐D Mars multifluid Block Adaptive Tree Solar‐wind Roe Upwind Scheme MHD code (MF‐MHD), the 3‐D Mars Global Ionosphere Thermosphere Model (M‐GITM), and the Mars exosphere Monte Carlo model Adaptive Mesh Particle Simulator (M‐AMPS) were used in this study. These models are one‐way coupled; i.e., the MF‐MHD model uses the 3‐D neutral inputs from M‐GITM and the 3‐D hot oxygen corona distribution from M‐AMPS. By adopting this one‐way coupling approach, the Martian upper atmosphere ion escape rates are investigated in detail with the combined variations of crustal field orientation, solar cycle, and Martian seasonal conditions. The calculated ion escape rates are compared with Mars Express observational data and show reasonable agreement. The variations in solar cycles and seasons can affect the ion loss by a factor of ∼3.3 and ∼1.3, respectively. The crustal magnetic field has a shielding effect to protect Mars from solar wind interaction, and this effect is the strongest for perihelion conditions, with the crustal field facing the Sun. Furthermore, the fraction of cold escaping heavy ionospheric molecular ions [(2+ and/or 2+)/Total] are inversely proportional to the fraction of the escaping (ionospheric and corona) atomic ion [O+/Total], whereas 2+ and 2+ ion escape fractions show a positive linear correlation since both ion species are ionospheric ions that follow the same escaping path.Key PointsStudy crustal field, solar cycle, and seasons on Mars' upper atmosphere ion escapeTo understand the long‐term evolution of Mars atmosphere over its historyTo support MAVEN spacecraft mission data analysis (2014–2016) | en_US |
dc.publisher | Clarendon Press | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | crustal field orientation | en_US |
dc.subject.other | solar cycle | en_US |
dc.subject.other | seasonal variations | en_US |
dc.subject.other | ion escape from Mars upper atmosphere | en_US |
dc.subject.other | global one‐way coupling | en_US |
dc.subject.other | 3‐D multifluid MHD model | en_US |
dc.title | Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Astronomy and Astrophysics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/115901/1/jgra52040.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/115901/2/jgra52040_am.pdf | |
dc.identifier.doi | 10.1002/2015JA020990 | en_US |
dc.identifier.source | Journal of Geophysical Research: Space Physics | en_US |
dc.identifier.citedreference | Lundin, R., S. Barabash, M. Holmström, H. Nilsson, Y. Futaana, R. Ramstad, M. Yamauchi, E. M. Dubinin, and M. Fraenz ( 2013 ), Solar cycle effects on the ion escape from Mars, Geophys. Res. Lett., 40, 6028 – 6032, doi: 10.1002/2013GL058154. | en_US |
dc.identifier.citedreference | Dong, C., S. W. Bougher, Y. Ma, G. Toth, A. F. Nagy, and D. Najib ( 2014 ), Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multifluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708 – 2715, doi: 10.1002/2014GL059515. | en_US |
dc.identifier.citedreference | Fang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. J. Ma ( 2010 ), On the effect of the Martian crustal magnetic field on atmospheric erosion, Icarus, 206, 130 – 138. | en_US |
dc.identifier.citedreference | Feldman, P. D., et al. ( 2011 ), Rosetta‐Alice observations of exospheric hydrogen and oxygen on Mars, Icarus, 214, 394 – 399. | en_US |
dc.identifier.citedreference | Glocer, A., G. Tóth, Y. J. Ma, T. I. Gombosi, J. C. Zhang, and L. M. Kistler ( 2009 ), Multifluid Block‐Adaptive‐Tree Solar wind Roe‐type Upwind Scheme: Magnetospheric composition and dynamics during geomagnetic storms—Initial results, J. Geophys. Res., 114, A12203, doi: 10.1029/2009JA014418. | en_US |
dc.identifier.citedreference | Haberle, R. M., M. M. Joshi, J. R. Murphy, J. R. Barnes, J. T. Schofield, G. Wilson, M. Lopez‐Valverde, J. L. Hollingsworth, A. F. C. Bridger, and J. Schaeffer ( 1999 ), General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res., 104, 8957 – 8974. | en_US |
dc.identifier.citedreference | Harnett, E. M., and R. M. Winglee ( 2006 ), Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events, J. Geophys. Res., 111, A09213, doi: 10.1029/2006JA011724. | en_US |
dc.identifier.citedreference | Johnson, R. E., and J. G. Luhmann ( 1998 ), Sputter contribution to the atmospheric corona on Mars, J. Geophys. Res., 103, 3649 – 3653. | en_US |
dc.identifier.citedreference | Kim, J., A. F. Nagy, J. L. Fox, and T. E. Cravens ( 1998 ), Solar cycle variability of hot oxygen atoms at Mars, J. Geophys. Res., 103 ( A12 ), 29,339 – 29,342, doi: 10.1029/98JA02727. | en_US |
dc.identifier.citedreference | Lee, Y., M. R. Combi, V. Tenishev, and S. W. Bougher ( 2013 ), Hot oxygen corona in Mars' upper thermosphere and exosphere: A comparison of results using the MGITM and MTGCM, AGU Fall Meeting Abstracts, P21A‐1703. | en_US |
dc.identifier.citedreference | Lee, Y., M. R. Combi, V. Tenishev, and S. W. Bougher ( 2014a ), Hot carbon corona in Mars' upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at equinox, J. Geophys. Res. Planets, 119, 905 – 924, doi: 10.1002/2013JE004552. | en_US |
dc.identifier.citedreference | Lee, Y., M. R. Combi, V. Tenishev, and S. W. Bougher ( 2014b ), Hot carbon corona in Mars' upper thermosphere and exosphere: 2. Solar cycle and seasonal variability, J. Geophys. Res. Planets, 119, 2487 – 2509, doi: 10.1002/2014JE004669. | en_US |
dc.identifier.citedreference | Lundin, R., S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, M. Fraenz, and E. M. Dubinin ( 2008 ), A comet‐like escape of ionospheric plasma from Mars, Geophys. Res. Lett., 35, L18203, doi: 10.1029/2008GL034811. | en_US |
dc.identifier.citedreference | Lundin, R., S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, E. M. Dubinin, and M. Fraenz ( 2009 ), Atmospheric origin of cold ion escape from Mars, Geophys. Res. Lett., 36, L17202, doi: 10.1029/2009GL039341. | en_US |
dc.identifier.citedreference | Lundin, R., S. Barabash, M. Yamauchi, H. Nilsson, and D. Brain ( 2011 ), On the relation between plasma escape and the Martian crustal magnetic field, Geophys. Res. Lett., 38, L02102, doi: 10.1029/2010GL046019. | en_US |
dc.identifier.citedreference | Ma, Y. J., A. F. Nagy, I. V. Sokolov, and K. C. Hansen ( 2004 ), Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi: 10.1029/2003JA010367. | en_US |
dc.identifier.citedreference | Ma, Y. J., and A. F. Nagy ( 2007 ), Ion escape fluxes from Mars, Geophys. Res. Lett., 34, L08201, doi: 10.1029/2006GL029208. | en_US |
dc.identifier.citedreference | Ma, Y. J., X. Fang, C. T. Russell, A. F. Nagy, G. Toth, J. G. Luhmann, D. A. Brain, and C. Dong ( 2014 ), Effects of crustal field rotation on the solar wind plasma interaction with Mars, Geophys. Res. Lett., 41, 6563 – 6569, doi: 10.1002/2014GL060785. | en_US |
dc.identifier.citedreference | Modolo, R., G. M. Chanteur, and E. Dubinin ( 2012 ), Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF, Geophys. Res. Lett., 39, L01106, doi: 10.1029/2011GL049895. | en_US |
dc.identifier.citedreference | Najib, D., A. F. Nagy, G. Tóth, and Y. J. Ma ( 2011 ), Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars, J. Geophys. Res., 116, A05204, doi: 10.1029/2010JA016272. | en_US |
dc.identifier.citedreference | Nilsson, H., N. J. Edberg, G. Stenberg, S. Barabash, M. Holmström, Y. Futaana, R. Lundin, and A. Fedorov ( 2011 ), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, 215, 475 – 484. | en_US |
dc.identifier.citedreference | Powell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309. | en_US |
dc.identifier.citedreference | Ramstad, R., S. Barabash, Y. Futaana, H. Nilsson, X.‐D. Wang, and M. Holmström ( 2015 ), The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations, J. Geophys. Res. Planets, 120, 1298 – 1309, doi: 10.1002/2015JE004816. | en_US |
dc.identifier.citedreference | Ridley, A., Y. Deng, and G. Toth ( 2006 ), The global ionosphere‐thermosphere model, J. Atmos. Sol. Terr. Phys., 68, 839 – 864. | en_US |
dc.identifier.citedreference | Riousset, J. A., C. S. Paty, R. J. Lillis, M. O. Fillingim, S. L. England, P. G. Withers, and J. P. M. Hale ( 2013 ), Three‐dimensional multifluid modeling of atmospheric electrodynamics in Mars' dynamo region, J. Geophys. Res. Space Physics, 118, 3647 – 3659, doi: 10.1002/jgra.50328. | en_US |
dc.identifier.citedreference | Riousset, J. A., C. S. Paty, R. J. Lillis, M. O. Fillingim, S. L. England, P. G. Withers, and J. P. M. Hale ( 2014 ), Electrodynamics of the Martian dynamo region near magnetic cusps and loops, Geophys. Res. Lett., 41, 1119 – 1125, doi: 10.1002/2013GL059130. | en_US |
dc.identifier.citedreference | Schunk, R. W., and A. F. Nagy ( 2009 ), Ionospheres, 2nd ed., Cambridge Univ. Press, New York. | en_US |
dc.identifier.citedreference | Tenishev, V., and M. Combi ( 2008 ), A global kinetic model for cometary comae: The evolution of the coma of the Rosetta target comet Churyumov‐Gerasimenko throughout the mission, Astrophys. J., 685, 659 – 677. | en_US |
dc.identifier.citedreference | Tóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870 – 903. | en_US |
dc.identifier.citedreference | Valeille, A., V. Tenishev, S. W. Bougher, M. R. Combi, and A. F. Nagy ( 2009 ), Three‐dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions, J. Geophys. Res., 114, E11005, doi: 10.1029/2009JE003388. | en_US |
dc.identifier.citedreference | Verigin, M., et al. ( 1991 ), Ions of planetary origin in the Martian magnetosphere (Phobos 2/TAUS experiment), Planet. Space Sci., 39, 131 – 137. | en_US |
dc.identifier.citedreference | Acuña, M. H., et al. ( 1999 ), Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment, Science, 284, 790 – 793. | en_US |
dc.identifier.citedreference | Arkani‐Hamed, J. ( 2001 ), A 50‐degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 106, 23,197 – 23,208. | en_US |
dc.identifier.citedreference | Barabash, S., A. Fedorov, R. Lundin, and J. A. Sauvaud ( 2007 ), Martian atmospheric erosion rates., Science, 315, 501 – 503. | en_US |
dc.identifier.citedreference | Bird, G. A. ( 1994 ), Molecular Gas Dynamics and the Direct Simulation of Gas Flows, 2nd ed., Clarendon Press, Oxford. | en_US |
dc.identifier.citedreference | Bougher, S. W., S. Engel, R. G. Roble, and B. Foster ( 2000 ), Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices, J. Geophys. Res., 105, 17,669 – 17,692. | en_US |
dc.identifier.citedreference | Bougher, S. W., J. M. Bell, J. R. Murphy, M. A. Lopez‐Valverde, and P. G. Withers ( 2006 ), Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions, Geophys. Res. Lett., 33, L02203, doi: 10.1029/2005GL024059. | en_US |
dc.identifier.citedreference | Bougher, S. W., P.‐L. Blelly, M. R. Combi, J. L. Fox, I. Mueller‐Wodarg, A. Ridley, and R. G. Roble ( 2008 ), Neutral upper atmosphere and ionosphere modeling, Space Sci. Rev., 139, 107 – 141. | en_US |
dc.identifier.citedreference | Bougher, S. W., T. E. Cravens, J. Grebowsky, and J. Luhmann ( 2014 ), The aeronomy of Mars: Characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape, Space Sci. Rev., doi: 10.1007/s11214‐014‐0053‐7, in press. | en_US |
dc.identifier.citedreference | Bougher, S. W., D. J. Pawlowski, J. M. Bell, S. Nelli, T. McDunn, J. R. Murphy, M. Chizek, and A. Ridley ( 2015 ), Mars Global Ionosphere‐Thermosphere Model (M‐GITM): Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere, J. Geophys. Res. Planets, 120, 311 – 342, doi: 10.1002/2014JE004715. | en_US |
dc.identifier.citedreference | Brain, D., et al. ( 2010 ), A comparison of global models for the solar wind interaction with Mars, Icarus, 206, 139 – 151. | en_US |
dc.identifier.citedreference | Brain, D., et al. ( 2012 ), Comparison of global models for the escape of Martian atmospheric plasma, AGU Fall Meeting Abstracts, P13C‐1969. | en_US |
dc.identifier.citedreference | Brecht, S. H., and S. A. Ledvina ( 2014a ), The role of the Martian crustal magnetic fields in controlling ionospheric loss, Geophys. Res. Lett., 41, 5340 – 5346, doi: 10.1002/2014GL060841. | en_US |
dc.identifier.citedreference | Brecht, S. H., and S. A. Ledvina ( 2014b ), Hybrid particle code simulations of Mars: The role of assorted processes in ionospheric escape, AGU Fall Meeting Abstracts, P54A‐06. | en_US |
dc.identifier.citedreference | Cravens, T. E., J. U. Kozyra, A. F. Nagy, T. I. Gombosi, and M. Kurtz ( 1987 ), Electron impact ionization in the vicinity of comets, J. Geophys. Res., 92, 7341 – 7353. | en_US |
dc.identifier.citedreference | Curry, S. M., M. W. Liemohn, X.‐H. Fang, Y.‐J. Ma, and J. Espley ( 2013 ), The influence of production mechanisms on pick‐up ion loss at Mars, J. Geophys. Res. Space Physics, 118, 554 – 569, doi: 10.1029/2012JA017665. | en_US |
dc.identifier.citedreference | Curry, S. M., M. W. Liemohn, X.‐H. Fang, Y.‐J. Ma, J. Slavin, J. Espley, S. Bougher, and C. F. Dong ( 2014 ), Test particle comparison of heavy atomic and molecular ion distributions at Mars, J. Geophys. Res. Space Physics, 119, 2328 – 2344, doi: 10.1002/2013JA019221. | en_US |
dc.identifier.citedreference | Curry, S. M., J. G. Luhmann, Y. Ma, M. W. Liemohn, C. Dong, and T. Hara ( 2015 ), Comparative pick‐up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape, Planet. Space Sci., 115, 35 – 47, doi: 10.1016/j.pss.2015.03.026. | en_US |
dc.identifier.citedreference | de Pater, I., and J. J. Lissauer ( 2010 ), Planetary Sciences, 2nd ed., pp. 5 – 6, Cambridge Univ. Press, New York. | en_US |
dc.identifier.citedreference | Deng, Y., A. D. Richmond, A. J. Ridley, and H.‐L. Liu ( 2008 ), Assessment of the non‐hydrostatic effect on the upper atmosphere using a general circulation model (GCM), Geophys. Res. Lett., 35, L01104, doi: 10.1029/2007GL032182. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.