Show simple item record

Release of Neutrophil Extracellular Traps by Neutrophils Stimulated With Antiphospholipid Antibodies: A Newly Identified Mechanism of Thrombosis in the Antiphospholipid Syndrome

dc.contributor.authorYalavarthi, Srilakshmien_US
dc.contributor.authorGould, Travis J.en_US
dc.contributor.authorRao, Ashish N.en_US
dc.contributor.authorMazza, Levi F.en_US
dc.contributor.authorMorris, Alexandra E.en_US
dc.contributor.authorNúñez‐álvarez, Carlosen_US
dc.contributor.authorHernández‐ramírez, Diegoen_US
dc.contributor.authorBockenstedt, Paula L.en_US
dc.contributor.authorLiaw, Patricia C.en_US
dc.contributor.authorCabral, Antonio R.en_US
dc.contributor.authorKnight, Jason S.en_US
dc.date.accessioned2015-11-12T21:03:38Z
dc.date.available2017-01-03T16:21:16Zen
dc.date.issued2015-11en_US
dc.identifier.citationYalavarthi, Srilakshmi; Gould, Travis J.; Rao, Ashish N.; Mazza, Levi F.; Morris, Alexandra E.; Núñez‐álvarez, Carlos ; Hernández‐ramírez, Diego ; Bockenstedt, Paula L.; Liaw, Patricia C.; Cabral, Antonio R.; Knight, Jason S. (2015). "Release of Neutrophil Extracellular Traps by Neutrophils Stimulated With Antiphospholipid Antibodies: A Newly Identified Mechanism of Thrombosis in the Antiphospholipid Syndrome." Arthritis & Rheumatology 67(11): 2990-3003.en_US
dc.identifier.issn2326-5191en_US
dc.identifier.issn2326-5205en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/115902
dc.publisherWiley Periodicals, Inc.en_US
dc.titleRelease of Neutrophil Extracellular Traps by Neutrophils Stimulated With Antiphospholipid Antibodies: A Newly Identified Mechanism of Thrombosis in the Antiphospholipid Syndromeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelRheumatologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115902/1/art39247.pdf
dc.identifier.doi10.1002/art.39247en_US
dc.identifier.sourceArthritis & Rheumatologyen_US
dc.identifier.citedreferenceRemijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 2011; 21: 290 – 304.en_US
dc.identifier.citedreferenceGarcia‐Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 2011; 3: 73ra20.en_US
dc.identifier.citedreferenceCampbell AM, Kashgarian M, Shlomchik MJ. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci Transl Med 2012; 4: 157ra41.en_US
dc.identifier.citedreferenceFuchs TA, Kremer Hovinga JA, Schatzberg D, Wagner DD, Lammle B. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood 2012; 120: 1157 – 64.en_US
dc.identifier.citedreferenceDemers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer‐associated thrombosis. Proc Natl Acad Sci U S A 2012; 109: 13076 – 81.en_US
dc.identifier.citedreferenceLee TH, Montalvo L, Chrebtow V, Busch MP. Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion 2001; 41: 276 – 82.en_US
dc.identifier.citedreferenceZhang J, McCrae KR. Annexin A2 mediates endothelial cell activation by antiphospholipid/anti‐β 2 glycoprotein I antibodies. Blood 2005; 105: 1964 – 9.en_US
dc.identifier.citedreferencePilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 2010; 185: 7413 – 25.en_US
dc.identifier.citedreferenceByrd AS, O'Brien XM, Johnson CM, Lavigne LM, Reichner JS. An extracellular matrix‐based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol 2013; 190: 4136 – 48.en_US
dc.identifier.citedreferencePierangeli SS, Vega‐Ostertag ME, Raschi E, Liu X, Romay‐Penabad Z, De Micheli V, et al. Toll‐like receptor and antiphospholipid mediated thrombosis: in vivo studies. Ann Rheum Dis 2007; 66: 1327 – 33.en_US
dc.identifier.citedreferenceNeeli I, Dwivedi N, Khan S, Radic M. Regulation of extracellular chromatin release from neutrophils. J Innate Immun 2009; 1: 194 – 201.en_US
dc.identifier.citedreferenceMegens RT, Vijayan S, Lievens D, Doring Y, van Zandvoort MA, Grommes J, et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 2012; 107: 597 – 8.en_US
dc.identifier.citedreferenceDemers M, Wagner DD. NETosis: a new factor in tumor progression and cancer‐associated thrombosis. Semin Thromb Hemost 2014; 40: 277 – 83.en_US
dc.identifier.citedreferenceGupta AK, Hasler P, Holzgreve W, Gebhardt S, Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL‐8 and their presence in preeclampsia. Hum Immunol 2005; 66: 1146 – 54.en_US
dc.identifier.citedreferencePassam FH, Giannakopoulos B, Mirarabshahi P, Krilis SA. Molecular pathophysiology of the antiphospholipid syndrome: the role of oxidative post‐translational modification of β 2 glycoprotein I. J Thromb Haemost 2011; 9 Suppl 1: 275 – 82.en_US
dc.identifier.citedreferencePrince LR, Whyte MK, Sabroe I, Parker LC. The role of TLRs in neutrophil activation. Curr Opin Pharmacol 2011; 11: 397 – 403.en_US
dc.identifier.citedreferenceHuber‐Lang M, Younkin EM, Sarma JV, Riedemann N, McGuire SR, Lu KT, et al. Generation of C5a by phagocytic cells. Am J Pathol 2002; 161: 1849 – 59.en_US
dc.identifier.citedreferenceFuchs TA, Bhandari AA, Wagner DD. Histones induce rapid and profound thrombocytopenia in mice. Blood 2011; 118: 3708 – 14.en_US
dc.identifier.citedreferenceLapponi MJ, Carestia A, Landoni VI, Rivadeneyra L, Etulain J, Negrotto S, et al. Regulation of neutrophil extracellular trap formation by anti‐inflammatory drugs. J Pharmacol Exp Ther 2013; 345: 430 – 7.en_US
dc.identifier.citedreferenceKuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 2011; 186: 4794 – 804.en_US
dc.identifier.citedreferenceWillis VC, Gizinski AM, Banda NK, Causey CP, Knuckley B, Cordova KN, et al. N‐α‐benzoyl‐N5‐(2‐chloro‐1‐iminoethyl)‐L‐ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen‐induced arthritis. J Immunol 2011; 186: 4396 – 404.en_US
dc.identifier.citedreferenceDe Meyer SF, Suidan GL, Fuchs TA, Monestier M, Wagner DD. Extracellular chromatin is an important mediator of ischemic stroke in mice. Arterioscler Thromb Vasc Biol 2012; 32: 1884 – 91.en_US
dc.identifier.citedreferenceDwyer MA, Huang AJ, Pan CQ, Lazarus RA. Expression and characterization of a DNase I‐Fc fusion enzyme. J Biol Chem 1999; 274: 9738 – 43.en_US
dc.identifier.citedreferenceBertolaccini ML, Amengual O, Andreoli L, Atsumi T, Chighizola CB, Forastiero R, et al. 14th International Congress on Antiphospholipid Antibodies Task Force: report on antiphospholipid syndrome laboratory diagnostics and trends. Autoimmun Rev 2014; 13: 917 – 30.en_US
dc.identifier.citedreferenceHughes GR. Hughes’ syndrome: the antiphospholipid syndrome. A historical view. Lupus 1998; 7 Suppl 2: S1 – 4.en_US
dc.identifier.citedreferenceErkan D, Aguiar CL, Andrade D, Cohen H, Cuadrado MJ, Danowski A, et al. 14th International Congress on Antiphospholipid Antibodies: task force report on antiphospholipid syndrome treatment trends. Autoimmun Rev 2014; 13: 685 – 96.en_US
dc.identifier.citedreferenceConti F, Sorice M, Circella A, Alessandri C, Pittoni V, Caronti B, et al. β 2 ‐glycoprotein I expression on monocytes is increased in anti‐phospholipid antibody syndrome and correlates with tissue factor expression. Clin Exp Immunol 2003; 132: 509 – 16.en_US
dc.identifier.citedreferenceCaronti B, Calderaro C, Alessandri C, Conti F, Tinghino R, Palladini G, et al. β 2 ‐glycoprotein I (β 2 ‐GPI) mRNA is expressed by several cell types involved in anti‐phospholipid syndrome‐related tissue damage. Clin Exp Immunol 1999; 115: 214 – 9.en_US
dc.identifier.citedreferenceAgar C, de Groot PG, Morgelin M, Monk SD, van Os G, Levels JH, et al. β 2 ‐glycoprotein I: a novel component of innate immunity. Blood 2011; 117: 6939 – 47.en_US
dc.identifier.citedreferenceMa K, Simantov R, Zhang JC, Silverstein R, Hajjar KA, McCrae KR. High affinity binding of β 2 ‐glycoprotein I to human endothelial cells is mediated by annexin II. J Biol Chem 2000; 275: 15541 – 8.en_US
dc.identifier.citedreferenceAllen KL, Fonseca FV, Betapudi V, Willard B, Zhang J, McCrae KR. A novel pathway for human endothelial cell activation by antiphospholipid/anti‐β 2 glycoprotein I antibodies. Blood 2012; 119: 884 – 93.en_US
dc.identifier.citedreferenceSorice M, Longo A, Capozzi A, Garofalo T, Misasi R, Alessandri C, et al. Anti–β 2 ‐glycoprotein I antibodies induce monocyte release of tumor necrosis factor α and tissue factor by signal transduction pathways involving lipid rafts. Arthritis Rheum 2007; 56: 2687 – 97.en_US
dc.identifier.citedreferenceLutters BC, Derksen RH, Tekelenburg WL, Lenting PJ, Arnout J, de Groot PG. Dimers of β 2 ‐glycoprotein I increase platelet deposition to collagen via interaction with phospholipids and the apolipoprotein E receptor 2′. J Biol Chem 2003; 278: 33831 – 8.en_US
dc.identifier.citedreferenceArvieux J, Jacob MC, Roussel B, Bensa JC, Colomb MG. Neutrophil activation by anti‐β 2 glycoprotein I monoclonal antibodies via Fcγ receptor II. J Leukoc Biol 1995; 57: 387 – 94.en_US
dc.identifier.citedreferenceGladigau G, Haselmayer P, Scharrer I, Munder M, Prinz N, Lackner K, et al. A role for Toll‐like receptor mediated signals in neutrophils in the pathogenesis of the anti‐phospholipid syndrome. PloS One 2012; 7: e42176.en_US
dc.identifier.citedreferenceRedecha P, Franzke CW, Ruf W, Mackman N, Girardi G. Neutrophil activation by the tissue factor/Factor VIIa/PAR2 axis mediates fetal death in a mouse model of antiphospholipid syndrome. J Clin Invest 2008; 118: 3453 – 61.en_US
dc.identifier.citedreferenceRitis K, Doumas M, Mastellos D, Micheli A, Giaglis S, Magotti P, et al. A novel C5a receptor‐tissue factor cross‐talk in neutrophils links innate immunity to coagulation pathways. J Immunol 2006; 177: 4794 – 802.en_US
dc.identifier.citedreferenceGirardi G, Berman J, Redecha P, Spruce L, Thurman JM, Kraus D, et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 2003; 112: 1644 – 54.en_US
dc.identifier.citedreferenceLeffler J, Stojanovich L, Shoenfeld Y, Bogdanovic G, Hesselstrand R, Blom AM. Degradation of neutrophil extracellular traps is decreased in patients with antiphospholipid syndrome. Clin Exp Rheumatol 2014; 32: 66 – 70.en_US
dc.identifier.citedreferenceFuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107: 15880 – 5.en_US
dc.identifier.citedreferenceFuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 2012; 32: 1777 – 83.en_US
dc.identifier.citedreferenceBrinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303: 1532 – 5.en_US
dc.identifier.citedreferenceBrill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10: 136 – 44.en_US
dc.identifier.citedreferenceMassberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16: 887 – 96.en_US
dc.identifier.citedreferenceVon Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209: 819 – 35.en_US
dc.identifier.citedreferenceGupta AK, Joshi MB, Philippova M, Erne P, Hasler P, Hahn S, et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis‐mediated cell death. FEBS Lett 2010; 584: 3193 – 7.en_US
dc.identifier.citedreferenceCarmona‐Rivera C, Zhao W, Yalavarthi S, Kaplan MJ. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase‐2. Ann Rheum Dis 2015; 74: 1417 – 24.en_US
dc.identifier.citedreferenceBorissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 2013; 33: 2032 – 40.en_US
dc.identifier.citedreferenceDoring Y, Manthey HD, Drechsler M, Lievens D, Megens RT, Soehnlein O, et al. Auto‐antigenic protein‐DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 2012; 125: 1673 – 83.en_US
dc.identifier.citedreferenceKnight JS, Luo W, O'Dell AA, Yalavarthi S, Zhao W, Subramanian V, et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res 2014; 114: 947 – 56.en_US
dc.identifier.citedreferenceMiyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006; 4: 295 – 306.en_US
dc.identifier.citedreferenceAlarcon‐Segovia D, Deleze M, Oria CV, Sanchez‐Guerrero J, Gomez‐Pacheco L, Cabiedes J, et al. Antiphospholipid antibodies and the antiphospholipid syndrome in systemic lupus erythematosus: a prospective analysis of 500 consecutive patients. Medicine (Baltimore) 1989; 68: 353 – 65.en_US
dc.identifier.citedreferenceTan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25: 1271 – 7.en_US
dc.identifier.citedreferencePengo V, Tripodi A, Reber G, Rand JH, Ortel TL, Galli M, et al. Update of the guidelines for lupus anticoagulant detection. J Thromb Haemost 2009; 7: 1737 – 40.en_US
dc.identifier.citedreferenceZhu M, Olee T, Le DT, Roubey RA, Hahn BH, Woods VL Jr, et al. Characterization of IgG monoclonal anti‐cardiolipin/anti‐β 2 GP1 antibodies from two patients with antiphospholipid syndrome reveals three species of antibodies. Br J Haematol 1999; 105: 102 – 9.en_US
dc.identifier.citedreferenceKessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small‐vessel vasculitis. Nat Med 2009; 15: 623 – 5.en_US
dc.identifier.citedreferenceVillanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 2011; 187: 538 – 52.en_US
dc.identifier.citedreferenceDenny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M, Sandy AR, et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol 2010; 184: 3284 – 97.en_US
dc.identifier.citedreferenceKnight JS, Zhao W, Luo W, Subramanian V, O'Dell AA, Yalavarthi S, et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest 2013; 123: 2981 – 93.en_US
dc.identifier.citedreferenceGould TJ, Vu TT, Swystun LL, Dwivedi DJ, Mai SH, Weitz JI, et al. Neutrophil extracellular traps promote thrombin generation through platelet‐dependent and platelet‐independent mechanisms. Arterioscler Thromb Vasc Biol 2014; 34: 1977 – 84.en_US
dc.identifier.citedreferenceHakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 2010; 107: 9813 – 8.en_US
dc.identifier.citedreferenceLande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self‐DNA‐peptide complexes in systemic lupus erythematosus. Sci Transl Med 2011; 3: 73ra19.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.