Show simple item record

Evaluating the Calibration and Power of Three Gene‐Based Association Tests of Rare Variants for the X Chromosome

dc.contributor.authorMa, Clementen_US
dc.contributor.authorBoehnke, Michaelen_US
dc.contributor.authorLee, Seunggeunen_US
dc.date.accessioned2015-11-12T21:03:40Z
dc.date.available2017-01-03T16:21:16Zen
dc.date.issued2015-11en_US
dc.identifier.citationMa, Clement; Boehnke, Michael; Lee, Seunggeun (2015). "Evaluating the Calibration and Power of Three Gene‐Based Association Tests of Rare Variants for the X Chromosome." Genetic Epidemiology 39(7): 499-508.en_US
dc.identifier.issn0741-0395en_US
dc.identifier.issn1098-2272en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/115905
dc.description.abstractAlthough genome‐wide association studies (GWAS) have identified thousands of trait‐associated genetic variants, there are relatively few findings on the X chromosome. For analysis of low‐frequency variants (minor allele frequency <5%), investigators can use region‐ or gene‐based tests where multiple variants are analyzed jointly to increase power. To date, there are no gene‐based tests designed for association testing of low‐frequency variants on the X chromosome. Here we propose three gene‐based tests for the X chromosome: burden, sequence kernel association test (SKAT), and optimal unified SKAT (SKAT‐O). Using simulated case‐control and quantitative trait (QT) data, we evaluate the calibration and power of these tests as a function of (1) male:female sample size ratio; and (2) coding of haploid male genotypes for variants under X‐inactivation. For case‐control studies, all three tests are reasonably well‐calibrated for all scenarios we evaluated. As expected, power for gene‐based tests depends on the underlying genetic architecture of the genomic region analyzed. Studies with more (haploid) males are generally less powerful due to decreased number of chromosomes. Power generally is slightly greater when the coding scheme for male genotypes matches the true underlying model, but the power loss for misspecifying the (generally unknown) model is small. For QT studies, type I error and power results largely mirror those for binary traits. We demonstrate the use of these three gene‐based tests for X‐chromosome association analysis in simulated data and sequencing data from the Genetics of Type 2 Diabetes (GoT2D) study.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherlow‐frequency variantsen_US
dc.subject.otherrare variantsen_US
dc.subject.othergene‐based association testsen_US
dc.subject.othergenome‐wide association studyen_US
dc.titleEvaluating the Calibration and Power of Three Gene‐Based Association Tests of Rare Variants for the X Chromosomeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115905/1/gepi21935.pdf
dc.identifier.doi10.1002/gepi.21935en_US
dc.identifier.sourceGenetic Epidemiologyen_US
dc.identifier.citedreferencePan W. 2009. Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet Epidemiol 33: 497 – 507.en_US
dc.identifier.citedreferencePurcell S, Neale B, Todd‐Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, and others. 2007. PLINK: a tool set for whole‐genome association and population‐based linkage analyses. Am J Hum Genet 81: 559 – 575.en_US
dc.identifier.citedreferenceSchaffner SF, Foo C, Gabriel S, Reich D, Daly MJ, Altshuler D. 2005. Calibrating a coalescent simulation of human genome sequence variation. Genome Res 15: 1576 – 1583.en_US
dc.identifier.citedreferenceSteinthorsdottir V, Thorleifsson G, Sulem P, Helgason H, Grarup N, Sigurdsson A, Helgadottir HT, Johannsdottir H, Magnusson OT, Gudjonsson SA, and others. 2014. Identification of low‐frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet 46: 294 – 298.en_US
dc.identifier.citedreferenceLee S, Abecasis GR, Boehnke M, Lin X. 2014. Rare‐variant association analysis: study designs and statistical tests. Am J Hum Genet 95: 5 – 23.en_US
dc.identifier.citedreferenceLoley C, Ziegler A, Konig IR. 2011. Association tests for X‐chromosomal markers—a comparison of different test statistics. Hum Hered 71: 23 – 36.en_US
dc.identifier.citedreferenceLyon MF. 1961. Gene action in the X‐chromosome of the mouse ( Mus musculus L.). Nature 190: 372 – 373.en_US
dc.identifier.citedreferenceMadsen BE, Browning SR. 2009. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5: e1000384.en_US
dc.identifier.citedreferenceMarchini J, Howie B, Myers S, McVean G, Donnelly P. 2007. A new multipoint method for genome‐wide association studies by imputation of genotypes. Nat Genet 39: 906 – 913.en_US
dc.identifier.citedreferenceNeale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho‐Melander M, Kathiresan S, Purcell SM, Roeder K, Daly MJ. 2011. Testing for an unusual distribution of rare variants. PLoS Genet 7: e1001322.en_US
dc.identifier.citedreferencePrice AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. 2006. Principal components analysis corrects for stratification in genome‐wide association studies. Nat Genet 38: 904 – 909.en_US
dc.identifier.citedreferenceZheng G, Joo J, Zhang C, Geller NL. 2007. Testing association for markers on the X chromosome. Genet Epidemiol 31: 834 – 843.en_US
dc.identifier.citedreferenceZhan X, Liu DJ. 2013. TaSer (TabAnno and SeqMiner): a toolset for annotating and querying next‐generation sequence data. Available at: http://zhanxw.com/seqminer.en_US
dc.identifier.citedreferenceWu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare‐variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89: 82 – 93.en_US
dc.identifier.citedreferenceWise AL, Gyi L, Manolio TA. 2013. eXclusion: toward integrating the X chromosome in genome‐wide association analyses. Am J Hum Genet 92: 643 – 647.en_US
dc.identifier.citedreferenceWang J, Yu R, Shete S. 2014. X‐chromosome genetic association test accounting for X‐inactivation, skewed X‐inactivation, and escape from X‐inactivation. Genet Epidemiol 38: 483 – 493.en_US
dc.identifier.citedreferenceAmos‐Landgraf JM, Cottle A, Plenge RM, Friez M, Schwartz CE, Longshore J, Willard HF. 2006. X chromosome‐inactivation patterns of 1,005 phenotypically unaffected females. Am J Hum Genet 79: 493 – 499.en_US
dc.identifier.citedreferenceAsimit J, Zeggini E. 2010. Rare variant association analysis methods for complex traits. Annu Rev Genet 44: 293 – 308.en_US
dc.identifier.citedreferenceCarrel L, Willard HF. 2005. X‐inactivation profile reveals extensive variability in X‐linked gene expression in females. Nature 434: 400 – 404.en_US
dc.identifier.citedreferenceClayton D. 2008. Testing for association on the X chromosome. Biostatistics 9: 593 – 600.en_US
dc.identifier.citedreferenceHickey PF, Bahlo M. 2011. X chromosome association testing in genome wide association studies. Genet Epidemiol 35: 664 – 670.en_US
dc.identifier.citedreferenceHindorff LA, MacArthur J, Wise A, Junkins HA, Hall PN, Klemm AK, Manolio TA. 2012. A catalog of published genome‐wide association studies. NHGRI. Available at: www.genome.gov/gwastudiesen_US
dc.identifier.citedreferenceHowie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. 2012. Fast and accurate genotype imputation in genome‐wide association studies through pre‐phasing. Nat Genet 44: 955 – 959.en_US
dc.identifier.citedreferenceHuyghe JR, Jackson AU, Fogarty MP, Buchkovich ML, Stancakova A, Stringham HM, Sim X, Yang L, Fuchsberger C, Cederberg H, and others. 2013. Exome array analysis identifies new loci and low‐frequency variants influencing insulin processing and secretion. Nat Genet 45: 197 – 201.en_US
dc.identifier.citedreferenceLee S. 2014. SKAT: SNP‐set (Sequence) Kernel Association Test. R package version 1.0.5. Available at: http://CRAN.R‐project.org/package=SKAT.en_US
dc.identifier.citedreferenceLee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, Team NGESP‐ELP, Christiani DC, Wurfel MM, Lin X. 2012. Optimal unified approach for rare‐variant association testing with application to small‐sample case‐control whole‐exome sequencing studies. Am J Hum Genet 91: 224 – 237.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.