Show simple item record

Effect of Pulse‐and‐Glide Strategy on Traffic Flow for a Platoon of Mixed Automated and Manually Driven Vehicles

dc.contributor.authorLi, Shengbo Ebenen_US
dc.contributor.authorDeng, Kunen_US
dc.contributor.authorZheng, Yangen_US
dc.contributor.authorPeng, Hueien_US
dc.date.accessioned2015-11-12T21:03:41Z
dc.date.available2017-01-03T16:21:17Zen
dc.date.issued2015-11en_US
dc.identifier.citationLi, Shengbo Eben; Deng, Kun; Zheng, Yang; Peng, Huei (2015). "Effect of Pulse‐and‐Glide Strategy on Traffic Flow for a Platoon of Mixed Automated and Manually Driven Vehicles." Computer‐Aided Civil and Infrastructure Engineering 30(11): 892-905.en_US
dc.identifier.issn1093-9687en_US
dc.identifier.issn1467-8667en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/115907
dc.description.abstractThe fuel consumption of ground vehicles is significantly affected by how they are driven. The fuel‐optimized vehicular automation technique can improve fuel economy for the host vehicle, but their effectiveness on a platoon of vehicles is still unknown. This article studies the performance of a well‐known fuel‐optimized vehicle automation strategy, i.e., Pulse‐and‐Glide (PnG) operation, on traffic smoothness and fuel economy in a mixed traffic flow. The mixed traffic flow is assumed to be a single‐lane highway on flat road consisting of both driverless and manually driven vehicles. The driverless vehicles are equipped with fuel economy‐oriented automated controller using the PnG strategy. The manually driven vehicles are simulated using the Intelligent Driver Models (IDM) to mimic the average car‐following behavior of human drivers in naturalistic traffics. A series of simulations are conducted with three scenarios, i.e., a single car, a car section, and a car platoon. The simulation results show that the PnG strategy can significantly improve the fuel economy of individual vehicles. For traffic flows, the fuel economy and traffic smoothness vary significantly under the PnG strategy.en_US
dc.publisherCRC Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleEffect of Pulse‐and‐Glide Strategy on Traffic Flow for a Platoon of Mixed Automated and Manually Driven Vehiclesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115907/1/mice12168.pdf
dc.identifier.doi10.1111/mice.12168en_US
dc.identifier.sourceComputer‐Aided Civil and Infrastructure Engineeringen_US
dc.identifier.citedreferenceLi S., E., Peng, H., Li, K. & Wang, J. ( 2012 ), Minimum fuel control strategy in automated car‐following scenarios, IEEE Transactions on Vehicular Technology, 61 ( 3 ), 998 – 1007.en_US
dc.identifier.citedreferenceJiang, X. & Adeli, H. ( 2005 ), Dynamic wavelet neural network model for traffic flow forecasting, Journal of Transportation Systems Engineering, 131 ( 10 ), 771 – 9.en_US
dc.identifier.citedreferenceKesting, A. & Treiber, M. ( 2008 ), How reaction time, update time, and adaptation time influence the stability of traffic flow, Computer‐Aided Civil and Infrastructure Engineering, 23 ( 2 ), 125 – 37.en_US
dc.identifier.citedreferenceKesting, A., Treiber, M. & Helbing, D. ( 2010 ), Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 4585 – 605.en_US
dc.identifier.citedreferenceKobayashi, S., Plotkin, S. & Ribeiro, K. ( 2009 ), Energy efficiency technologies for road vehicles, Energy Efficiency, 2 ( 2 ), 125 – 37.en_US
dc.identifier.citedreferenceLi, S., Li, K., Rajamani, R. & Wang, J. ( 2011 ), Model predictive multi‐objective vehicular adaptive cruise control,   IEEE Transactions on Control Systems Technology, 19 ( 3 ), 556 – 66.en_US
dc.identifier.citedreferenceLi S., E. & Peng, H. ( 2012 ), Strategies to minimize the fuel consumption of passenger cars during car‐following scenarios, Journal of Automobile Engineering, 226 ( 3 ), 419 – 29.en_US
dc.identifier.citedreferenceManzie, C., Watson, H. & Halgamuge, S. ( 2007 ), Fuel economy improvements for urban driving: hybrid vs. intelligent vehicles, Transportation Research Part C: Emerging Technologies, 15 ( 1 ), 1 – 16.en_US
dc.identifier.citedreferenceNgoduy, D. & Wilson, R. E. ( 2014 ), Multi‐anticipative non‐local macroscopic traffic model, Computer‐Aided Civil and Infrastructure Engineering, 29 ( 4 ), 248 – 63.en_US
dc.identifier.citedreferenceSetlur, P., Wagner, J., Dawson, D. & Samuels, B. ( 2003 ), Nonlinear control of a continuously variable transmission (CVT), IEEE Transactions on Control Systems Technology, 11 ( 1 ), 101 – 8.en_US
dc.identifier.citedreferenceTreiber, M., Hennecke, A. & Helbing, D. ( 2000 ), Congested traffic states in empirical observations and microscopic simulations, Physical Review E, 62 ( 2 ), 1805, DOI: http://dx.doi.org/10.1103/PhysRevE.62.1805.en_US
dc.identifier.citedreferenceVan Mierlo, J., Maggetto, G., Van de Burgwal, E. & Gense, R. ( 2004 ), Driving style and traffic measures‐influence on vehicle emissions and fuel consumption, Journal of Automobile Engineering, 218 ( 1 ), 43 – 50.en_US
dc.identifier.citedreferenceWard, J. & Wilson, R. ( 2011 ), Criteria for convective versus absolute string instability in car‐following models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467, 2185 – 208.en_US
dc.identifier.citedreferenceWilson, R. ( 2008 ), Mechanisms for spatio‐temporal pattern formation in highway traffic models, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 366 ( 1872 ), 2017 – 32.en_US
dc.identifier.citedreferenceZarkadoula, M., Zoidis, G. & Tritopoulou, E. ( 2007 ), Training urban bus drivers to promote smart driving: a note on a Greek eco‐driving pilot program, Transportation Research Part D: Transport and Environment, 12 ( 6 ), 449 – 51.en_US
dc.identifier.citedreferenceZhang, J. & Ioannou, P. ( 2004 ), Longitudinal control of heavy trucks: environmental and fuel economy considerations, in Intelligent Transportation Systems, 2004. Proceedings of the 7th International IEEE Conference, pp. 761 – 66.en_US
dc.identifier.citedreferenceAdeli, H. & Ghosh‐Dastidar, S. ( 2004 ), Mesoscopic‐wavelet freeway work zone flow and congestion feature extraction model, Journal of Transportation Engineering, 130 ( 1 ), 94 – 103.en_US
dc.identifier.citedreferenceAdeli, H. & Jiang, X. ( 2009 ), Intelligent Infrastructure: Neural Networks, Wavelets, and Chaos Theory for Intelligent Transportation Systems and Smart Structures, CRC Press, Boca Raton, FL.en_US
dc.identifier.citedreferenceAdeli, H. & Samant, A. ( 2000 ), An adaptive conjugate gradient neural network—wavelet model for traffic incident detection, Computer‐Aided Civil and Infrastructure Engineering, 15 ( 4 ), 251 – 60.en_US
dc.identifier.citedreferenceBeusen, B., Broekx, S., Denys, T., Beckx, C., Degraeuwe, B., Gijsbers, M., Scheepers, K., Govaerts, L., Torfs, R. & Int Panis, L. ( 2009 ), Using on‐board logging devices to study the longer‐term impact of an eco‐driving course, Transportation Research:  Part D: Transport and Environment, 14 ( 7 ), 514 – 20.en_US
dc.identifier.citedreferenceCastillo, E., Calvino, A., Nogal, M. & Lo, H. K. ( 2014 ), On the probabilistic and physical consistency of traffic random variables and models, Computer‐Aided Civil and Infrastructure Engineering, 29 ( 7 ), 496 – 517.en_US
dc.identifier.citedreferenceDavis, L. C. ( 2004 ), Effect of adaptive cruise control systems on traffic flow, Physical Review E, 69 ( 6 ), 1 – 10.en_US
dc.identifier.citedreferenceDavis, L. C. ( 2007 ), Effect of adaptive cruise control systems on mixed traffic flow near an on‐ramp, Physica A: Statistical Mechanics and Its Applications, 379 ( 1 ), 274 – 90.en_US
dc.identifier.citedreferenceDarbha, S. & Rajagopal, R. ( 1999 ), Intelligent cruise control systems and traffic flow stability, Transportation Research: Part C: Emerging Technologies, 7 ( 6 ), 329 – 52.en_US
dc.identifier.citedreferenceDharia, A. & Adeli, H. ( 2003 ), Neural network model for rapid forecasting of freeway link travel time, Engineering Applications of Artificial Intelligence, 16 ( 7‐8 ), 607 – 13.en_US
dc.identifier.citedreferenceDomínguez, R., Alonso, J., Onieva, E. & Gonzalez, C. ( 2013 ), A transferable belief model applied to lidar perception for autonomous vehicles, Integrated Computer‐Aided Engineering, 20 ( 3 ), 289 – 302.en_US
dc.identifier.citedreferenceGhosh‐Dastidar, S. & Adeli, H. ( 2006 ), Neural network‐wavelet micro‐simulation model for delay and queue length estimation at freeway work zones, Journal of Transportation Systems Engineering, 132 ( 4 ), 331 – 41.en_US
dc.identifier.citedreferenceHelbing, D., Treiber, M., Kesting, A. & Schonhof, M. ( 2009 ), Theoretical vs. empirical classification and prediction of congested traffic states,   European Physical Journal B, 69, 583 – 98.en_US
dc.identifier.citedreferenceHellström, E., Ivarsson, M., Aslund, J. & Nielsen, L. ( 2009 ), Look‐ahead control for heavy trucks to minimize trip time and fuel consumption, Control Engineering Practice, 17 ( 2 ), 245 – 54.en_US
dc.identifier.citedreferenceJerath, K. & Brennan, S. ( 2010 ), Adaptive cruise control: towards higher traffic flows, at the cost of increased susceptibility to congestion, in Proceedings of AVEC, Vol. 10, Loughborough, UK.en_US
dc.identifier.citedreferenceJiang, X. & Adeli, H. ( 2004 ), Wavelet packet‐autocorrelation function method for traffic flow pattern analysis, Computer‐Aided Civil and Infrastructure Engineering, 19 ( 6 ), 324 – 37.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.