Show simple item record

Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model

dc.contributor.authorMatsumoto, Katsumien_US
dc.contributor.authorTokos, Kathy S.en_US
dc.contributor.authorGregory, Chaden_US
dc.date.accessioned2015-11-12T21:03:50Z
dc.date.available2016-11-01T16:43:14Zen
dc.date.issued2015-09en_US
dc.identifier.citationMatsumoto, Katsumi; Tokos, Kathy S.; Gregory, Chad (2015). "Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model." Geochemistry, Geophysics, Geosystems 16(9): 3097-3110.en_US
dc.identifier.issn1525-2027en_US
dc.identifier.issn1525-2027en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/115919
dc.description.abstractVentilation and dissolved oxygen in Lake Superior are key factors that determine the fate of various natural and anthropogenic inputs to the lake. We employ an idealized age tracer and biogeochemical tracers in a realistically configured numerical model of Lake Superior to characterize its ventilation and dissolved O2 cycle. Our results indicate that Lake Superior is preferentially ventilated over rough bathymetry and that spring overturning following a very cold winter does not completely ventilate the lake interior. While this is unexpected for a dimictic lake, no part of the lake remains isolated from the atmosphere for more than 300 days. Our results also show that Lake Superior's oxygen cycle is dominated by solubility changes; as a result, the expected relationship between biological consumption of dissolved O2 and ventilation age does not manifest.Key Points:Lake Superior is preferentially ventilated over rough bathymetryOverturning following an icy winter does not completely ventilate the lakeDissolved oxygen signal is dominated by physical processesen_US
dc.publisherEldigioen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherideal tracersen_US
dc.subject.otheroxygenen_US
dc.subject.otherventilationen_US
dc.subject.othernumerical modelen_US
dc.subject.otherLake Superioren_US
dc.titleVentilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical modelen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115919/1/ggge20818_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115919/2/ggge20818.pdf
dc.identifier.doi10.1002/2015GC005916en_US
dc.identifier.sourceGeochemistry, Geophysics, Geosystemsen_US
dc.identifier.citedreferenceSchlitzer, R. ( 1986 ), 14C in the deep water of the eastern Atlantic, Radiocarbon, 28 ( 2A ), 391 – 396.en_US
dc.identifier.citedreferenceMatheson, D. H., and M. Munawar ( 1978 ), Lake Superior basin and development, J. Great Lakes Res., 4 ( 3‐4 ), 249 – 263.en_US
dc.identifier.citedreferenceMatsumoto, K. ( 2007 ), Radiocarbon‐based circulation of the world oceans, J. Geophys. Res., 112, C09004, doi: 10.1029/2007JC004095.en_US
dc.identifier.citedreferenceMcKinney, P., B. Holt, and K. Matsumoto ( 2012 ), Small eddies observed in Lake Superior using SAR and sea surface temperature data, J. Great Lakes Res., 38, 786 – 797.en_US
dc.identifier.citedreferenceMcManus, J., E. A. Heinen, and M. M. Baehr ( 2003 ), Hypolimnetic oxidation rates in Lake Superior: Role of dissolved organic material on the lake's carbon budget, Limnol. Oceanogr. Res., 48 ( 4 ), 1624 – 1632.en_US
dc.identifier.citedreferenceMessias, M.‐J., C. Andrie, L. Memery, and H. Mercier ( 1999 ), Tracing the North Atlantic Deep Water through the Romanche and Chain fracture zones with chloroflouromethants, Deep Sea Res., Part I, 46, 1247 – 1278.en_US
dc.identifier.citedreferencePeeters, F., D. Finger, M. Hofer, M. Brennwald, D. M. Livingstone, and R. Kipfer ( 2003 ), Deep‐water renewal in Lake Issyk‐Kul driven by differential cooling, Limnol. Oceanogr. Methods, 48 ( 4 ), 1419 – 1431.en_US
dc.identifier.citedreferenceRhein, M., L. Stramma, and G. Krahmann ( 1998 ), The spreading of Antarctic Bottom Water in the tropical Atlantic, Deep Sea Res., Part I, 45, 507 – 527.en_US
dc.identifier.citedreferenceRuss, M. E., N. E. Ostrom, H. Gandhi, P. H. Ostrom, and N. R. Urban ( 2004 ), Temporal and spatial variations in R: P ratios in Lake Superior, an oligotrophic freshwater environment, J. Geophys. Res., 109, C10S12, doi: 10.1029/2003JC001890.en_US
dc.identifier.citedreferenceSarmiento, J. L., and N. Gruber ( 2006 ), Ocean Biogeochemical Dynamics, Princeton Univ. Press, Princeton, N. J.en_US
dc.identifier.citedreferenceSchmidt, M., N. M. Budnev, N. G. Granin, M. Sturm, M. Schurter, and A. Wuest ( 2008 ), Lake Baikal deepwater renewal mystery solved, Geophys. Res. Lett., 35, L09605, doi: 10.1029/2008GL033223.en_US
dc.identifier.citedreferenceShchepetkin, A. F., and J. C. McWilliams ( 2005 ), The regional ocean modeling system (ROMS): A split‐explicit, free surface, topography‐following coordinate ocean model, Ocean Modell., 9, 347 – 404.en_US
dc.identifier.citedreferenceShimaraev, M. N., N. G. Granin, and A. A. Zhdanov ( 1993 ), Deep ventilation of Lake Baikal waters due to spring thermal bars, Limnol. Oceanogr., 38 ( 5 ), 1068 – 1072.en_US
dc.identifier.citedreferenceSmall, G. E., J. B. Cotner, J. C. Finlay, R. A. Stark, and R. W. Sterner ( 2014 ), Nitrogen transformations at the sediment‐water interface across redox gradients in the Laurentian Great Lakes, Hydrobiolgia, 731, 95 – 108, doi: 10.1007/s10750‐013‐1569‐7.en_US
dc.identifier.citedreferenceSterner, R. W. ( 2010 ), In situ‐measured primary production in Lake Superior, J. Great Lakes Res., 36, 139 – 149.en_US
dc.identifier.citedreferenceTorgersen, T., Z. Top, B. Clarke, W. J. Jenkins, and W. S. Broecker ( 1977 ), A new method for physical limnology‐tritium‐helium 3 ages‐results for Lakes Erie, Huron, and Ontario, Limnol. Oceanogr., 22 ( 2 ), 181 – 193.en_US
dc.identifier.citedreferenceUllman, D., J. Brown, P. Conillon, and T. Mavor ( 1998 ), Surface temperature fronts in the Great Lakes, J. Great Lakes Res., 24 ( 4 ), 753 – 775.en_US
dc.identifier.citedreferenceUrban, N. R., M. T. Auer, S. A. Green, X. Lu, D. S. Apul, K. D. Powell, and L. Bub ( 2005 ), Carbon cycling in Lake Superior, J. Geophys. Res., 110, C06S90, doi:10.1029/2003JC002230.en_US
dc.identifier.citedreferenceWeiss, R. F., E. C. Carmack, and V. M. Koropalov ( 1991 ), Deep‐water renewal and biological production in Lake Baikal, Nature, 349, 665 – 669.en_US
dc.identifier.citedreferenceWhite, B., and K. Matsumoto ( 2012 ), Causal mechanisms of the deep chlorophyll maximum in Lake Superior: A numerical modeling investigation, J. Great Lakes Res., 38, 504 – 513.en_US
dc.identifier.citedreferenceWhite, B., J. Austin, and K. Matsumoto ( 2012 ), A three dimensional model of Lake Superior with ice and biogeochemistry, J. Great Lakes Res., 38, 61 – 71.en_US
dc.identifier.citedreferenceZigah, P. K., E. C. Minor, J. P. Werne, and S. L. McCallister ( 2011 ), Radiocarbon and stable carbon isotopic insights into provenance and cycling of carbon in Lake Superior, Limnol. Oceanogr. Methods, 56 ( 3 ), 867 – 886.en_US
dc.identifier.citedreferenceAeschlback‐Hertig, W., R. Kipfer, M. Hofer, D. M. Imboden, and H. Bauer ( 1996 ), Density‐driven exchange between the basins of Lake Lucerne (Switzerland) traced with the 3H‐3He method, Limnol. Oceanogr., 41 ( 4 ), 707 – 721.en_US
dc.identifier.citedreferenceAssel, R. A. ( 2003 ), An electronic atlas of Great Lakes ice cover, Great Lakes Environmental Research Laboratory, Ann Arbor, Mich.en_US
dc.identifier.citedreferenceBeletsky, D., J. H. Saylor, and D. J. Schwab ( 1999 ), Mean circulation in the Great Lakes, J. Great Lakes Res., 25 ( 1 ), 78 – 93.en_US
dc.identifier.citedreferenceBennett, E. B. ( 1978 ), Water budgets for Lake Superior and Whitefish Bay, J. Great Lakes Res., 4 ( 3‐4 ), 331 – 342.en_US
dc.identifier.citedreferenceBennington, V., G. McKinley, and C. H. Wu ( 2010 ), General circulation of Lake Superior: Mean, variability, and trends from 1979 to 2006, J. Geophys. Res., 115, C12015, doi: 10.1029/2010JC006261.en_US
dc.identifier.citedreferenceBennington, V., G. McKinley, N. Urban, and C. P. McDonald ( 2012 ), Can spatial heterogeneity explain the perceived imbalance in Lake Superior's carbon budget? A model study, J. Geophys. Res., 117, G03020, doi: 10.1029/2011JG001895.en_US
dc.identifier.citedreferenceBroecker, W. S., and T.‐H. Peng ( 1982 ), Tracers in the Sea, Eldigio, Palisades, N. Y.en_US
dc.identifier.citedreferenceBryan, K., and L. J. Lewis ( 1979 ), A water mass model of the world ocean, J. Geophys. Res., 84, 2503 – 2518.en_US
dc.identifier.citedreferenceChen, C. A., and F. Millero ( 1986 ), Precise thermodynamic properties for natural waters covering only the limnological range, Limnol. Oceanogr., 31, 657 – 662.en_US
dc.identifier.citedreferenceChen, C. S., J. R. Zhu, E. Ralph, S. A. Green, J. W. Budd, and F. Y. Zhang ( 2001 ), Prognostic modeling studies of the Keweenaw current in Lake Superior. Part I: Formation and evolution, J. Phys. Oceanogr., 31 ( 2 ), 379 – 395.en_US
dc.identifier.citedreferenceChen, C. S., J. R. Zhu, K. Y. Kang, H. D. Liu, E. Ralph, S. A. Green, and J. W. Budd ( 2002 ), Cross‐frontal transport along the Keweenaw coast in Lake Superior: A Lagrangian model study, Dyn. Atmos. Oceans, 36 ( 1‐3 ), 83 – 102.en_US
dc.identifier.citedreferenceCotner, J. B., B. Biddanda, W. Makino, and E. Stets ( 2004 ), Organic carbon biogeochemistry of Lake Superior, Aquat. Ecosyst. Health Manage., 7 ( 4 ), 451 – 464.en_US
dc.identifier.citedreferenceEngland, M. H. ( 1995 ), The age of water and ventilation timescales in a global ocean model, J. Phys. Oceanogr., 25 ( 11 ), 2756 – 2777.en_US
dc.identifier.citedreferenceFasham, M. J. R., H. W. Ducklow, and S. M. McKelvie ( 1990 ), A nitrogen‐based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48 ( 3 ), 591 – 639.en_US
dc.identifier.citedreferenceFer, I., U. Lemmin, and S. A. Thorpe ( 2002 ), Winter cascading of cold water in Lake Geneva, J. Geophys. Res., 106 ( C6 ), 3060, doi: 10.1029/2001JC000828.en_US
dc.identifier.citedreferenceForel, F. A. ( 1880 ), La conglation des lacs Suisses et savoyards pendant l'hiver 1879‐1880, 11 ‐ Lac Leman Echo Alpes, 3, 149 – 161.en_US
dc.identifier.citedreferenceFrancis, J. A., and S. J. Vavrus ( 2012 ), Evidence linking Arctic amplification to extreme weather in mid‐latitudes, Geophys. Res. Lett., 39, L06801, doi: 10.1029/2012GL051000.en_US
dc.identifier.citedreferenceGargett, A. E., and G. Holloway ( 1984 ), Dissipation and diffusion by internal wave breaking, J. Mar. Res., 42 ( 1 ), 15 – 27.en_US
dc.identifier.citedreferenceHarrington, M. W. ( 1895 ), Surface currents of the Great Lakes, Bulletin B, Weather Bureau, U.S. Department of Agriculture, Washington, D. C.en_US
dc.identifier.citedreferenceHecky, R. E. ( 2000 ), A biogeochemical comparison of Lakes Superior and Malawi and the limnological consequences of an endless summer, Aquat. Ecosyst. Health Manage., 3, 23 – 33.en_US
dc.identifier.citedreferenceHofer, M., F. Peeters, W. Aeschlback‐Hertig, M. Brennwald, J. Holocher, D. M. Livingston, V. Romanovski, and R. Kipfer ( 2002 ), Rapid deep‐water renewal in Lake Issyk‐Kul (Kyrgyzstan) indicated by transient tracers, Limnol. Oceanogr., 47 ( 4 ), 1210 – 1216.en_US
dc.identifier.citedreferenceHohmann, R., R. Kipfer, F. Peeters, G. Piepke, and D. M. Imboden ( 1997 ), Processes of deep‐water renewal in Lake Baikal, Limnol. Oceanogr., 42 ( 5 ), 841 – 855.en_US
dc.identifier.citedreferenceHohmann, R., M. Hofer, R. Kipfer, F. Peeters, and D. M. Imboden ( 1998 ), Distribution of helium and tritium in Lake Baikal, J. Geophys. Res., 103, 12,823–12, 838.en_US
dc.identifier.citedreferenceHubbard, D. W., and J. D. Spain ( 1973 ), The structure of the early spring thermal bar in Lake Superior, in Proceedings of the 16th Conference on Great Lakes Research, pp. 735 – 742, International Association for Great Lakes Research, Ann Arbor, Mich.en_US
dc.identifier.citedreferenceLam, D. C. L. ( 1978 ), Simulation of water circulation and chloride transports in Lake Superior from summer 1973, J. Great Lakes Res., 4 ( 3‐4 ), 343 – 349.en_US
dc.identifier.citedreferenceLedwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. Toole ( 2000 ), Evidence for enhanced mixing over rough topography in the abyssal ocean, Nature, 403, 179 – 182.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.