Show simple item record

A simulation study of the thermosphere mass density response to substorms using GITM

dc.contributor.authorLiu, Xianjingen_US
dc.contributor.authorRidley, Aaronen_US
dc.date.accessioned2015-11-12T21:04:22Z
dc.date.available2016-11-01T16:43:14Zen
dc.date.issued2015-09en_US
dc.identifier.citationLiu, Xianjing; Ridley, Aaron (2015). "A simulation study of the thermosphere mass density response to substorms using GITM." Journal of Geophysical Research: Space Physics 120(9): 7987-8001.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/115970
dc.description.abstractThe temporal and spatial variations of the thermospheric mass density during a series of idealized substorms were investigated using the Global Ionosphere Thermosphere Model (GITM). The maximum mass density perturbation of an idealized substorm with a peak variation of hemispheric power (HP) of 50 GW and interplanetary magnetic field (IMF) Bz of −2 nT was ~14% about 50 min after the substorm onset in the nightside sector of the auroral zone. The mass density response to different types of energy input has a strong local time dependence, with the mass density perturbation due to only an IMF Bz variation peaking in the dusk sector and the density perturbation due to only HP variation peaks in the nightside sector. Simulations with IMF Bz changes only and HP changes only showed that the system behaves slightly nonlinearly when both IMF and HP variations are included (a maximum of 6% of the nonlinearity) and that the nonlinearity grows with energy input. The neutral gas heating rate due to Joule heating was of same magnitude as the heating rate due to precipitation, but the majority of the temperature enhancement due to the heating due to precipitation occurs at lower altitude as compared to the auroral heating. About 110 min after onset, a negative mass density perturbation (~−5%) occurred in the night sector, which was consistent with the mass density measurement of the CHAMP satellite.Key PointsMass density response to different types of energy input has strong local time dependenceNegative mass density perturbation (~−5%) occurred in the night sector during storm recover phaseMass density responses to different types of energy source are nearly a linear systemen_US
dc.publisherAcademicen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherGITM modelingen_US
dc.subject.otherJoule heatingen_US
dc.subject.otherhemisphere poweren_US
dc.subject.othersubstormsen_US
dc.subject.othermass density perturbationen_US
dc.titleA simulation study of the thermosphere mass density response to substorms using GITMen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115970/1/jgra52067_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115970/2/jgra52067.pdf
dc.identifier.doi10.1002/2014JA020962en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRitter, P., H. Lühr, and E. Doornbos ( 2010 ), Substorm‐related thermospheric density and wind disturbances derived from CHAMP observations, Ann. Geophys., 28 ( 6 ), 1207 – 1220, doi: 10.5194/angeo-28-1207-2010.en_US
dc.identifier.citedreferenceLei, J., A. G. Burns, J. P. Thayer, W. Wang, M. G. Mlynczak, L. A. Hunt, X. Dou, and E. Sutton ( 2012 ), Overcooling in the upper thermosphere during the recovery phase of the 2003 October storms, J. Geophys. Res., 117, A03314, doi: 10.1029/2011JA016994.en_US
dc.identifier.citedreferenceLiu, X., J. P. Thayer, A. Burns, W. Wang, and E. Sutton ( 2014 ), Altitude variations in the thermosphere mass density response to geomagnetic activity during the recent solar minimum, J. Geophys. Res. Space Physics, 119, 2160 – 2177, doi: 10.1002/2013JA019453.en_US
dc.identifier.citedreferenceLotko, W. ( 2007 ), The magnetosphere–ionosphere system from the perspective of plasma circulation: A tutorial, J. Atmos. Sol. Terr. Phys., 69 ( 3 ), 191 – 211, doi: 10.1016/j.jastp.2006.08.011.en_US
dc.identifier.citedreferenceLu, G., A. D. Richmond, B. A. Emery, and R. G. Roble ( 1995 ), Magnetosphere‐ionosphere‐thermosphere coupling: Effect of neutral winds on energy transfer and field‐aligned current, J. Geophys. Res., 100 ( A10 ), 19,643 – 19,659, doi: 10.1029/95JA00766.en_US
dc.identifier.citedreferenceMarcos, F. A., J. O. Wise, M. J. Kendra, N. J. Grossbard, and B. R. Bowman ( 2005 ), Detection of a long‐term decrease in thermospheric neutral density, Geophys. Res. Lett., 32, L04103, doi: 10.1029/2004GL021269.en_US
dc.identifier.citedreferenceMarcos, F. A., S. T. Lai, C. Y. Huang, C. S. Lin, J. M. Retterer, S. H. Delay, and E. K. Sutton ( 2010 ), Towards next level satellite drag modeling, paper AIAA 2010‐7840 presented at the AIAA Atmospheric and Space Environments Conference, Toronto, Ont., Canada, 2–5 Aug.en_US
dc.identifier.citedreferencePaschmann, G., S. Haaland, and R. Treumann (Eds.) ( 2002 ), Auroral Plasma Physics, Springer, New York.en_US
dc.identifier.citedreferenceQian, L., S. C. Solomon, and T. J. Kane ( 2009 ), Seasonal variation of thermospheric density and composition, J. Geophys. Res., 114, A01312, doi: 10.1029/2008JA013643.en_US
dc.identifier.citedreferenceReigber, C., H. Lühr, and P. Schwintzer ( 2002 ), CHAMP mission status and perspectives, Eos Trans. AGU, 81 ( 48 ), 48.en_US
dc.identifier.citedreferenceRidley, A. J., Y. Deng, and G. Toth ( 2006 ), The global ionosphere‐thermosphere model, J. Atmos. Sol. Terr. Phys., 68 ( 8 ), 839 – 864, doi: 10.1016/j.jastp.2006.01.008.en_US
dc.identifier.citedreferencePrölss, G. ( 1981 ), Latitudinal structure and extension of the polar atmospheric disturbance, J. Geophys. Res., 86 ( A4 ), 2385 – 2396, doi: 10.1029/JA086iA04p02385.en_US
dc.identifier.citedreferenceRoble, R. G., R. E. Dickinson, and E. C. Ridley ( 1982 ), Global circulation and temperature structure of thermosphere with high‐latitude plasma convection, J. Geophys. Res., 87 ( A3 ), 1599 – 1614, doi: 10.1029/JA087iA03p01599.en_US
dc.identifier.citedreferenceRoble, R. G., E. C. Ridley, and R. E. Dickinson ( 1987 ), On the global mean structure of the thermosphere, J. Geophys. Res., 92 ( A8 ), 8745 – 8758, doi: 10.1029/JA092iA08p08745.en_US
dc.identifier.citedreferenceSolomon, S. C., L. Qian, L. V. Didkovsky, R. A. Viereck, and T. N. Woods ( 2011 ), Causes of low thermospheric density during the 2007–2009 solar minimum, J. Geophys. Res., 116, A00H07, doi: 10.1029/2011JA016508.en_US
dc.identifier.citedreferenceTapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber ( 2004 ), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, doi: 10.1029/2004GL019920.en_US
dc.identifier.citedreferenceThayer, J. P., and J. Semeter ( 2004 ), The convergence of magnetospheric energy flux in the polar atmosphere, J. Atmos. Sol. Terr. Phys., 66 ( 10 ), 807 – 824, doi: 10.1016/j.jastp.2004.01.035.en_US
dc.identifier.citedreferenceThayer, J. P., X. Liu, J. Lei, M. Pilinski, and A. Burns ( 2012 ), The impact of helium on thermosphere mass density response to geomagnetic activity during the recent solar minimum, J. Geophys. Res., 117, A07315, doi: 10.1029/2012JA017832.en_US
dc.identifier.citedreferenceValdivia, J. A., A. S. Sharma, and K. Papadopoulos ( 1996 ), Prediction of magnetic storms by nonlinear models, Geophys. Res. Lett., 23 ( 21 ), 2899 – 2902, doi: 10.1029/96GL02828.en_US
dc.identifier.citedreferenceVolland, H. ( 1979 ), Magnetospheric electric fields and currents and their influence on large scale thermospheric circulation and composition, J. Atmos. Terr. Phys., 41 ( 7–8 ), 853 – 866, doi: 10.1016/0021-9169(79)90128-4.en_US
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi: 10.1029/2004JA010884.en_US
dc.identifier.citedreferenceWu, J.‐G., and H. Lundstedt ( 1996 ), Prediction of geomagnetic storms from solar wind data using Elman Recurrent Neural Networks, Geophys. Res. Lett., 23 ( 4 ), 319 – 322, doi: 10.1029/96GL00259.en_US
dc.identifier.citedreferencePicone, J., A. Hedin, D. P. Drob, and A. Aikin ( 2002 ), NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107 ( A12 ), 1468, doi: 10.1029/2002JA009430.en_US
dc.identifier.citedreferenceA, E., A. J. Ridley, D. Zhang, and Z. Xiao ( 2012 ), Analyzing the hemispheric asymmetry in the thermospheric density response to geomagnetic storms, J. Geophys. Res., 117, A08317, doi: 10.1029/2011JA017259.en_US
dc.identifier.citedreferenceAhn, B. H., S. I. Akasofu, and Y. Kamide ( 1983 ), The Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL, J. Geophys. Res., 88 ( A8 ), 6275 – 6287, doi: 10.1029/JA088iA08p06275.en_US
dc.identifier.citedreferenceBanks, P. M., and G. Kockarts ( 1973 ), Aeronomy, Part B, Academic, San Diego, Calif.en_US
dc.identifier.citedreferenceBruinsma, S. L., and J. M. Forbes ( 2009 ), Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations, Adv. Space Res., 43 ( 3 ), 369 – 376, doi: 10.1016/j.asr.2008.10.031.en_US
dc.identifier.citedreferenceClausen, L. B. N., S. E. Milan, and A. Grocott ( 2014 ), Thermospheric density perturbations in response to substorms, J. Geophys. Res. Space Physics, 119, 4441 – 4455, doi: 10.1002/2014JA019837.en_US
dc.identifier.citedreferenceEmmert, J. T., J. M. Picone, J. L. Lean, and S. H. Knowles ( 2004 ), Global change in the thermosphere: Compelling evidence of a secular decrease in density, J. Geophys. Res., 109, A02301, doi: 10.1029/2003JA010176.en_US
dc.identifier.citedreferenceEmmert, J. T., J. Lean, and J. Picone ( 2010 ), Record‐low thermospheric density during the 2008 solar minimum, Geophys. Res. Lett., 37, L12102, doi: 10.1029/2010GL043671.en_US
dc.identifier.citedreferenceFuller‐Rowell, T. J., and D. S. Evans ( 1987 ), Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data, J. Geophys. Res., 92 ( A7 ), 7606 – 7618, doi: 10.1029/JA092iA07p07606.en_US
dc.identifier.citedreferenceFuller‐Rowell, T. J., and D. Rees ( 1981 ), A three‐dimensional, time‐dependent simulation of the global dynamical response of the thermosphere to a geomagnetic substorm, J. Atmos. Terr. Phys., 43 ( 7 ), 701 – 721, doi: 10.1016/0021-9169(81)90142-2.en_US
dc.identifier.citedreferenceKeating, G. M., R. H. Tolson, and M. S. Bradford ( 2000 ), Evidence of long term global decline in the Earth's thermospheric densities apparently related to anthropogenic effects, Geophys. Res. Lett., 27 ( 10 ), 1523 – 1526, doi: 10.1029/2000GL003771.en_US
dc.identifier.citedreferenceKnipp, D. J., W. K. Tobiska, and B. A. Emery ( 2004 ), Direct and indirect thermospheric heating sources for solar cycles 21–23, Sol. Phys., 224 ( 1–2 ), 495 – 505, doi: 10.1007/s11207-005-6393-4.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.