Show simple item record

Peritumoral tissue compression is predictive of exudate flux in a rat model of cerebral tumor: an MRI study in an embedded tumor

dc.contributor.authorEwing, James R.en_US
dc.contributor.authorNagaraja, Tavarekere N.en_US
dc.contributor.authorAryal, Madhava P.en_US
dc.contributor.authorKeenan, Kelly A.en_US
dc.contributor.authorElmghirbi, Rashaen_US
dc.contributor.authorBagher‐ebadian, Hassanen_US
dc.contributor.authorPanda, Swayampravaen_US
dc.contributor.authorLu, Meien_US
dc.contributor.authorMikkelsen, Tomen_US
dc.contributor.authorCabral, Glauberen_US
dc.contributor.authorBrown, Stephen L.en_US
dc.date.accessioned2015-11-12T21:04:24Z
dc.date.available2017-01-03T16:21:17Zen
dc.date.issued2015-11en_US
dc.identifier.citationEwing, James R.; Nagaraja, Tavarekere N.; Aryal, Madhava P.; Keenan, Kelly A.; Elmghirbi, Rasha; Bagher‐ebadian, Hassan ; Panda, Swayamprava; Lu, Mei; Mikkelsen, Tom; Cabral, Glauber; Brown, Stephen L. (2015). "Peritumoral tissue compression is predictive of exudate flux in a rat model of cerebral tumor: an MRI study in an embedded tumor." NMR in Biomedicine 28(11): 1557-1569.en_US
dc.identifier.issn0952-3480en_US
dc.identifier.issn1099-1492en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/115972
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherSpringeren_US
dc.subject.otherDCE‐MRIen_US
dc.subject.othertumor vasculatureen_US
dc.subject.otherPatlak ploten_US
dc.subject.otherLogan ploten_US
dc.subject.otherinterstitial flowen_US
dc.subject.othertumor interstitial volumeen_US
dc.subject.otherdynamic contrast enhanced MRIen_US
dc.titlePeritumoral tissue compression is predictive of exudate flux in a rat model of cerebral tumor: an MRI study in an embedded tumoren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115972/1/nbm3418.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115972/2/nbm3418_am.pdf
dc.identifier.doi10.1002/nbm.3418en_US
dc.identifier.sourceNMR in Biomedicineen_US
dc.identifier.citedreferencePronin IN, McManus KA, Holodny AI, Peck KK, Kornienko VN. Quantification of dispersion of Gd‐DTPA from the initial area of enhancement into the peritumoral zone of edema in brain tumors. J. Neurooncol 2009; 94 ( 3 ): 399 – 408.en_US
dc.identifier.citedreferenceEwing JR, Brown SL, Nagaraja TN, Bagher‐Ebadian H, Paudyal R, Panda S, Knight RA, Ding G, Jiang Q, Lu M, Fenstermacher JD. MRI measurement of change in vascular parameters in the 9L rat cerebral tumor after dexamethasone administration. J. Magn. Reson. Imaging. 2008 27 ( 6 ): 1430 – 1438.en_US
dc.identifier.citedreferenceNagaraja TN, Aryal MP, Brown SL, Bagher‐Ebadian H, Mikkelsen T, Yang JJ, Panda S, Keenan KA, Cabral G, Ewing JR. Cilengitide‐induced temporal variations in transvascular transfer parameters of tumor vasculature in a rat glioma model: identifying potential MRI biomarkers of acute effects. PLoS One 2013; 8 ( 12 ): e84493.en_US
dc.identifier.citedreferenceNagaraja TN, Karki K, Ewing JR, Divine GW, Fenstermacher JD, Patlak CS, Knight RA. The MRI‐measured arterial input function resulting from a bolus injection of Gd‐DTPA in a rat model of stroke slightly underestimates that of Gd‐[(14)C]DTPA and marginally overestimates the blood‐to‐brain influx rate constant determined by Patlak plots. Magn. Reson. Med. 2010; 63 ( 6 ): 1502 – 1509.en_US
dc.identifier.citedreferenceSourbron SP, Buckley DL. Classic models for dynamic contrast‐enhanced MRI. NMR Biomed. 2013; 26 ( 8 ): 1004 – 1027.en_US
dc.identifier.citedreferenceBrown SL, Nagaraja TN, Aryal MP, Panda S, Cabral G, Keenan KA, Elmghirbi R, Mikkelsen T, Hearshen D, Knight RA, Wen N, Kim JH, Ewing JR. MRI‐tracked tumor vascular changes in the hours after single‐fraction irradiation. Radiat. Res. 2015; 183 ( 6 ): 713 – 721.en_US
dc.identifier.citedreferenceScheffé H. The Analysis of Variance, Bradley RA, Hunter JS, Kendall DG, Watson GS (eds). Wiley: New York, 1959.en_US
dc.identifier.citedreferencePatlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood‐to‐brain transfer constants from multiple‐time uptake data. J. Cereb. Blood Flow Metab. 1983; 3: 1 – 7.en_US
dc.identifier.citedreferencePatlak C, Blasberg R. Graphical evaluation of blood to brain transfer constants from multiple‐time uptake data. Generalizations. J. Cereb. Blood Flow Metab. 1985; 5: 584 – 590.en_US
dc.identifier.citedreferencePinheiro J, Bates DB, DebRoy SD, Sarkar D, R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package. 2013.en_US
dc.identifier.citedreferenceR Core Team. R. A Language and Environment for Statistical Computing. R Foundation For Statistical Computing: Vienna, 2013.en_US
dc.identifier.citedreferenceLevin VA, Fenstermacher JD, Patlak CS. Sucrose and inulin space measurements of cerebral cortex in four mammalian species. Am. J. Physiol. 1970; 219 ( 5 ): 1528 – 1533.en_US
dc.identifier.citedreferenceSykova E, Nicholson C. Diffusion in brain extracellular space. Physiol. Rev. 2008; 88 ( 4 ): 1277 – 1340.en_US
dc.identifier.citedreferenceMunson JM, Shieh AC. Interstitial fluid flow in cancer: implications for disease progression and treatment. Cancer Manag. Res. 2014; 6: 317 – 328.en_US
dc.identifier.citedreferencePishko GL, Astary GW, Mareci TH, Sarntinoranont M. Sensitivity analysis of an image‐based solid tumor computational model with heterogeneous vasculature and porosity. Ann. Biomed. Eng. 2011; 39 ( 9 ): 2360 – 2373.en_US
dc.identifier.citedreferenceBoucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue‐isolated and subcutaneous tumors: implications for therapy. Cancer Res. 1990; 50 ( 15 ): 4478 – 4484.en_US
dc.identifier.citedreferencePishko GL, Astary GW, Zhang J, Mareci TH, Sarntinoranont M. Role of convection and diffusion on DCE‐MRI parameters in low leakiness KHT sarcomas. Microvasc. Res. 2012; 84 ( 3 ): 306 – 313.en_US
dc.identifier.citedreferenceSarntinoranont M, Rooney F, Ferrari M. Interstitial stress and fluid pressure within a growing tumor. Ann. Biomed. Eng. 2003; 31 ( 3 ): 327 – 335.en_US
dc.identifier.citedreferenceNetti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000; 60 ( 9 ): 2497 – 2503.en_US
dc.identifier.citedreferenceMagdoom KN, Pishko GL, Rice L, Pampo C, Siemann DW, Sarntinoranont M. MRI‐based computational model of heterogeneous tracer transport following local infusion into a mouse hind limb tumor. PLoS One 2014; 9 ( 3 ): e89594.en_US
dc.identifier.citedreferenceSirianni RW, Zheng MQ, Saltzman WM, Huang Y, Carson RE. Direct, quantitative, and noninvasive imaging of the transport of active agents through intact brain with positron emission tomography. Mol. Imaging Biol. 2013; 15 ( 5 ): 596 – 605.en_US
dc.identifier.citedreferencePathak AP, Artemov D, Ward BD, Jackson DG, Neeman M, Bhujwalla ZM. Characterizing extravascular fluid transport of macromolecules in the tumor interstitium by magnetic resonance imaging. Cancer Res. 2005; 65 ( 4 ): 1425 – 1432.en_US
dc.identifier.citedreferenceNetti PA, Baxter LT, Boucher Y, Skalak R, Jain RK. Time‐dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res. 1995; 55 ( 22 ): 5451 – 5458.en_US
dc.identifier.citedreferenceStylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res. 2013; 73 ( 13 ): 3833 – 3841.en_US
dc.identifier.citedreferenceBruehlmeier M, Roelcke U, Blauenstein P, Missimer J, Schubiger PA, Locher JT, Pellikka R, Ametamey SM. Measurement of the extracellular space in brain tumors using 76 Br‐bromide and PET. J. Nucl. Med. 2003; 44 ( 8 ): 1210 – 1218.en_US
dc.identifier.citedreferenceLudemann L, Grieger W, Wurm R, Budzisch M, Hamm B, Zimmer C. Comparison of dynamic contrast‐enhanced MRI with WHO tumor grading for gliomas. Eur. Radiol. 2001; 11 ( 7 ): 1231 – 1241.en_US
dc.identifier.citedreferenceYankeelov TE, Rooney WD, Li X, Springer CS. Variation of the relaxographic "shutter‐speed" for transcytoliemmal water exchange affects the CR bolus‐tracking curve shape. Magn. Reson. Med. 2003; 50 ( 6 ): 1151 – 1169.en_US
dc.identifier.citedreferenceLi X, Rooney WD, Varallyay CG, Gahramanov S, Muldoon LL, Goodman JA, Tagge IJ, Selzer AH, Pike MM, Neuwelt EA, Springer CS, Jr. Dynamic‐contrast‐enhanced‐MRI with extravasating contrast reagent: rat cerebral glioma blood volume determination. J. Magn. Reson. 2010; 206 ( 2 ): 190 – 199.en_US
dc.identifier.citedreferenceLi X, Rooney WD, Springer CS, Jr. A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents. Magn. Reson. Med. 2005; 54 ( 6 ): 1351 – 1359.en_US
dc.identifier.citedreferenceJain R, Ellika SK, Scarpace L, Schultz LR, Rock JP, Gutierrez J, Patel SC, Ewing J, Mikkelsen T. Quantitative estimation of permeability surface–area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. Am. J. Neuroradiol. 2008; 29 ( 4 ): 694 – 700.en_US
dc.identifier.citedreferenceBlasberg RG, Fenstermacher JD, Patlak CS. Transport of alpha‐aminoisobutyric acid across brain capillary and cellular membranes. J. Cereb. Blood Flow Metab. 1983; 3 ( 1 ): 8 – 32.en_US
dc.identifier.citedreferenceBereczki D, Wei L, Otsuka T, Hans F‐J, Acuff V, Patlak C, Fenstermacher J. Hypercapnia slightly raises blood volume and sizably elevates flow velocity in brain microvessels. Am. J. Physiol. 1993; 264: H1360 – H1369.en_US
dc.identifier.citedreferenceBoucher Y, Salehi H, Witwer B, Harsh GR, Jain RK. Interstitial fluid pressure in intracranial tumours in patients and in rodents. Br. J. Cancer 1997; 75 ( 6 ): 829 – 836.en_US
dc.identifier.citedreferenceHassid Y, Furman‐Haran E, Margalit R, Eilam R, Degani H. Noninvasive magnetic resonance imaging of transport and interstitial fluid pressure in ectopic human lung tumors. Cancer Res. 2006; 66 ( 8 ): 4159 – 4166.en_US
dc.identifier.citedreferenceHompland T, Ellingsen C, Rofstad EK. Preclinical evaluation of Gd‐DTPA and gadomelitol as contrast agents in DCE‐MRI of cervical carcinoma interstitial fluid pressure. BMC Cancer 2012; 12 ( 1 ): 544.en_US
dc.identifier.citedreferenceHompland T, Ellingsen C, Ovrebo KM, Rofstad EK. Interstitial fluid pressure and associated lymph node metastasis revealed in tumors by dynamic contrast‐enhanced MRI. Cancer Res. 2012; 72 ( 19 ): 4899 – 4908.en_US
dc.identifier.citedreferenceLiu LJ, Brown SL, Ewing JR, Schlesinger M. Phenomenological model of interstitial fluid pressure in a solid tumor. Phys. Rev. E 2011; 84 ( 2 ): 021919‐021911–021919‐021919.en_US
dc.identifier.citedreferenceNield DA, Bejan A. Convection in Porous Media, 3rd edn. Springer: New York, 2006.en_US
dc.identifier.citedreferenceEwing JR, Bagher‐Ebadian H. Model selection in measures of vascular parameters using dynamic contrast‐enhanced MRI: experimental and clinical applications. NMR Biomed. 2013; 26 ( 8 ): 1028 – 1041.en_US
dc.identifier.citedreferenceLogan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl. Med. Biol. 2000; 27 ( 7 ): 661 – 670.en_US
dc.identifier.citedreferenceLogan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ, Christman DR. Graphical analysis of reversible radioligand binding from time‐activity measurements applied to [N‐11C‐methyl]‐(−)‐cocaine PET studies in human subjects. J. Cereb. Blood Flow Metab. 1990; 10 ( 5 ): 740 – 747.en_US
dc.identifier.citedreferenceAryal MP, Nagaraja TN, Keenan KA, Bagher‐Ebadian H, Panda S, Brown SL, Cabral G, Fenstermacher JD, Ewing JR. Dynamic contrast enhanced MRI parameters and tumor cellularity in a rat model of cerebral glioma at 7 T. Magn. Reson. Med. 2014; 71 ( 6 ): 2206 – 2214.en_US
dc.identifier.citedreferenceTofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM. Estimating kinetic parameters from dynamic contrast‐enhanced T 1 ‐weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging 1999; 10 ( 3 ): 223 – 232.en_US
dc.identifier.citedreferenceAryal MP, Nagaraja TN, Brown SL, Lu M, Bagher‐Ebadian H, Ding G, Panda S, Keenan K, Cabral G, Mikkelsen T, Ewing JR. Intratumor distribution and test–retest comparisons of physiological parameters quantified by dynamic contrast‐enhanced MRI in rat U251 glioma. NMR Biomed. 2014; 27 ( 10 ): 1230 – 1238.en_US
dc.identifier.citedreferenceEwing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, Cao Y, Jiang Q, Nagaraja TN, Churchman JL, Fenstermacher JD. Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9 L model of rat cerebral tumor. J. Cereb. Blood Flow Metab. 2006; 26 ( 3 ): 310 – 320.en_US
dc.identifier.citedreferenceBagher‐Ebadian H, Jain R, Nejad‐Davarani SP, Mikkelsen T, Lu M, Jiang Q, Scarpace L, Arbab AS, Narang J, Soltanian‐Zadeh H, Paudyal R, Ewing JR. Model selection for DCE‐T1 studies in glioblastoma. Magn. Reson. Med. 2012; 68 ( 1 ): 241 – 251.en_US
dc.identifier.citedreferenceGelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG. Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn. Reson. Med. 2001; 45 ( 1 ): 71 – 79.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.