Show simple item record

Coherent wave activity in Mercury's magnetosheath

dc.contributor.authorSundberg, Torbjörnen_US
dc.contributor.authorBoardsen, Scott A.en_US
dc.contributor.authorBurgess, Daviden_US
dc.contributor.authorSlavin, James A.en_US
dc.date.accessioned2015-11-12T21:04:31Z
dc.date.available2016-11-01T16:43:14Zen
dc.date.issued2015-09en_US
dc.identifier.citationSundberg, Torbjörn ; Boardsen, Scott A.; Burgess, David; Slavin, James A. (2015). "Coherent wave activity in Mercury's magnetosheath." Journal of Geophysical Research: Space Physics 120(9): 7342-7356.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/115984
dc.description.abstractThis study presents a statistical overview of coherent wave activity in Mercury's magnetosheath. Left‐handed electromagnetic ion cyclotron waves are commonly found behind the quasi‐perpendicular section of the bow shock, where they are present in ~50% of the spacecraft crossings of the magnetosheath. Their occurrence distribution maximizes within the magnetosheath, approximately halfway between the bow shock and the magnetopause, and the waves are generally strongly Doppler shifted up to frequencies above the local ion cyclotron frequency. Downstream of the quasi‐parallel shock, the magnetosheath often exhibits large‐amplitude pulsations with wave periods around 10 s and peak‐to‐peak amplitudes of up to 100 nT that dominate the magnetic field structure. These waves are circularly left‐hand polarized with wave vectors in the direction of the local shock normal. The data suggest that they have been generated upstream of the shock and transmitted into the downstream region. Their occurrence rates maximize at the near‐parallel shock, where they are present approximately 10% of the time, and where they also show their largest wave powers. Some evidence is also found of waves with a right‐handed polarization in the spacecraft frame. These consist of both whistler waves above the local ion cyclotron frequency and ion cyclotron waves propagating against the magnetosheath flow with Doppler shifts exceeding the intrinsic wave frequency, which results in a change in their apparent polarization. These waves are in minority compared to the left‐handed observations, which indicates a preference for ion cyclotron waves propagating in the direction of the plasma flow.Key PointsWe investigate the properties of magnetosheath waves at MercuryIon cyclotron waves are common in the magnetosheath downstream of the quasi‐perpendicular shockLarge‐amplitude waves up to 100 nT peak to peak are observed downstream of the quasi‐parallel shocken_US
dc.publisherCambridge Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMercuryen_US
dc.subject.otherion cyclotron wavesen_US
dc.subject.othermagnetosheathen_US
dc.titleCoherent wave activity in Mercury's magnetosheathen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115984/1/jgra52042_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115984/2/jgra52042.pdf
dc.identifier.doi10.1002/2015JA021499en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceShan, L., Q. Lu, M. Wu, X. Gao, C. Huang, T. Zhang, and S. Wang ( 2014 ), Transmission of large‐amplitude ULF waves through a quasi‐parallel shock at Venus, J. Geophys. Res. Space Physics, 119, 237 – 245, doi: 10.1002/2013JA019396.en_US
dc.identifier.citedreferenceMarsch, E., K.‐H. Mühlhäuser, H. Rosenbauer, R. Schwenn, and F. M. Neubauer ( 1982a ), Solar wind helium ions: Observations of the Helios solar probes between 0.3 and 1 AU, J. Geophys. Res., 87 ( A1 ), 35 – 51, doi: 10.1029/JA087iA01p00035.en_US
dc.identifier.citedreferenceMarsch, E., K.‐H. Mühlhäuser, R. Schwenn, H. Rosenbauer, W. Pilipp, and F. M. Neubauer ( 1982b ), Solar wind protons: Three‐dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU, J. Geophys. Res., 87 ( A1 ), 52 – 72, doi: 10.1029/JA087iA01p00052.en_US
dc.identifier.citedreferenceMcClintock, W. E., R. J. Vervack Jr., E. T. Bradley, R. M. Killen, N. Mouawad, A. L. Sprague, M. H. Burger, S. C. Solomon, and N. R. Izenberg ( 2009 ), MESSENGER observations of Mercury's exosphere: Detection of magnesium and distribution of constituents, Science, 324 ( 5927 ), 610 – 613.en_US
dc.identifier.citedreferenceMcKean, M. E., N. Omidi, and D. Krauss‐Varban ( 1995 ), Wave and ion evolution downstream of quasi‐perpendicular bow shocks, J. Geophys. Res., 100 ( A3 ), 3427 – 3437, doi: 10.1029/94JA02529.en_US
dc.identifier.citedreferenceRussell, C. T., S. S. Mayerberger, and X. Blanco‐Cano ( 2006 ), Proton cyclotron waves at Mars and Venus, Adv. Space Res., 38, 745 – 751.en_US
dc.identifier.citedreferenceSchwartz, S. J., D. Burgess, and J. J. Moses ( 1996 ), Low‐frequency waves in the Earth's magnetosheath: Present status, Ann. Geophys., 14, 1134 – 1150.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2008 ), Mercury's magnetosphere after MESSENGER's first flyby, Science, 321, 85 – 89, doi: 10.1126/science.1159040.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury's magnetosphere, Science, 324, 606 – 610.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010 ), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665 – 668.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2014 ), MESSENGER observations of Mercury's dayside magnetosphere under extreme solar wind conditions, J. Geophys. Res. Space Physics, 119, 8087 – 8116, doi: 10.1002/2014JA020319.en_US
dc.identifier.citedreferenceSoucek, J., C. P. Escoubet, and B. Grison ( 2015 ), Magnetosheath plasma stability and ULF wave occurrence as a function of location in the magnetosheath and upstream bow shock parameters, J. Geophys. Res. Space Physics, 120, 2838 – 2850, doi: 10.1002/2015JA021087.en_US
dc.identifier.citedreferenceSundberg, T., S. A. Boardsen, J. A. Slavin, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, and S. C. Solomon ( 2012a ), MESSENGER orbital observations of large‐amplitude Kelvin‐Helmholtz waves at Mercury's magnetopause, J. Geophys. Res., 117, A04216, doi: 10.1029/2011JA017268.en_US
dc.identifier.citedreferenceSundberg, T., et al. ( 2012b ), MESSENGER observations of dipolarization events in Mercury's magnetotail, J. Geophys. Res., 117, A00M03, doi: 10.1029/2012JA017756.en_US
dc.identifier.citedreferenceSundberg, T., S. A. Boardsen, J. A. Slavin, V. M. Uritsky, B. J. Anderson, H. Korth, D. J. Gershman, J. M. Raines, T. H. Zurbuchen, and S. C. Solomon ( 2013 ), Cyclic reformation of a quasi‐parallel bow shock at Mercury: MESSENGER observations, J. Geophys. Res. Space Physics, 118, 6457 – 6464, doi: 10.1002/jgra.50602.en_US
dc.identifier.citedreferenceUritsky, V. M., J. A. Slavin, G. V. Khazanov, E. F. Donovan, S. A. Boardsen, B. J. Anderson, and H. Korth ( 2011 ), Kinetic‐scale magnetic turbulence and finite Larmorradius effects at Mercury, J. Geophys. Res., 116, A09236, doi: 10.1029/2011JA016744.en_US
dc.identifier.citedreferenceWarnecke, J., M. G. Kivelson, K. K. Khurana, D. E. Huddleston, and C. T. Russell ( 1997 ), Ion cyclotron waves observed at Galileo's Io encounter: Implications for neutral cloud distribution and plasma composition, Geophys. Res. Lett., 24 ( 17 ), 2139 – 2142, doi: 10.1029/97GL01129.en_US
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 – 2227, doi: 10.1002/jgra.50237.en_US
dc.identifier.citedreferenceYoon, P. H., and J. Seough ( 2012 ), Quasilinear theory of anisotropy‐beta relation for combined mirror and proton cyclotron instabilities, J. Geophys. Res., 117, A08102, doi: 10.1029/2012JA017697.en_US
dc.identifier.citedreferenceZwan, B. J., and R. A. Wolf ( 1976 ), Depletion of solar wind plasma near a planetary boundary, J. Geophys. Res., 81 ( 10 ), 1636 – 1648, doi: 10.1029/JA081i010p01636.en_US
dc.identifier.citedreferenceZurbuchen, T. H., et al. ( 2011 ), MESSENGER observations of the spatial distribution of planetary ions near Mercury, Science, 333, 1862 – 1865.en_US
dc.identifier.citedreferenceAnderson, B. J., and S. A. Fuselier ( 1993 ), Magnetic pulsations from 0.1 to 4.0 Hz and associated plasma properties in the Earth's subsolar magnetosheath and plasma depletion layer, J. Geophys. Res., 98 ( A2 ), 1461 – 1479, doi: 10.1029/92JA02197.en_US
dc.identifier.citedreferenceAnderson, B. J., and S. A. Fuselier ( 1994 ), Response of thermal ions to electromagnetic ion cyclotron waves, J. Geophys. Res., 99 ( A10 ), 19,413 – 19,425, doi: 10.1029/94JA01235.en_US
dc.identifier.citedreferenceAnderson, B. J., S. A. Fuselier, and D. Murr ( 1991 ), Electromagnetic ion cyclotron waves observed in the plasma depletion layer, Geophys. Res. Lett., 18 ( 11 ), 1955 – 1958, doi: 10.1029/91GL02238.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen ( 2011 ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859 – 1862.en_US
dc.identifier.citedreferenceBarabash, S., E. Dubinin, N. Pissarenko, R. Lundin, and C. T. Russell ( 1991 ), Picked‐up protons near Mars: Phobos observations, Geophys. Res. Lett., 18, 1805 – 1808, doi: 10.1029/91GL02082.en_US
dc.identifier.citedreferenceBavassano Cattaneo, M. B., C. Basile, G. Moreno, and J. D. Richardson ( 1998 ), Evolution of mirror structures in the magnetosheath of Saturn from the bow shock to the magnetopause, J. Geophys. Res., 103 ( A6 ), 11,961 – 11,972, doi: 10.1029/97JA03683.en_US
dc.identifier.citedreferenceBoardsen, S. A., and J. A. Slavin ( 2007 ), Search for pick‐up ion generated Na + cyclotron waves at Mercury, Geophys. Res. Lett., 34, L22106, doi: 10.1029/2007GL031504.en_US
dc.identifier.citedreferenceBoardsen, S. A., J. A. Slavin, B. J. Anderson, H. Korth, and S. C. Solomon ( 2009 ), Comparison of ultra‐low‐frequency waves at Mercury under northward and southward IMF, Geophys. Res. Lett., 36, L18106, doi: 10.1029/2009GL039525.en_US
dc.identifier.citedreferenceBoardsen, S. A., T. Sundberg, J. A. Slavin, B. J. Anderson, H. Korth, S. C. Solomon, and L. G. Blomberg ( 2010 ), Observations of Kelvin‐Helmholtz waves along the dusk‐side boundary of Mercury's magnetosphere during MESSENGER's third flyby, Geophys. Res. Lett., 37, L12101, doi: 10.1029/2010GL043606.en_US
dc.identifier.citedreferenceBoardsen, S. A., J. A. Slavin, B. J. Anderson, H. Korth, D. Schriver, and S. C. Solomon ( 2012 ), Survey of coherent ~1 Hz waves in Mercury's inner magnetosphere from MESSENGER observations, J. Geophys. Res., 117, A00M05, doi: 10.1029/2012JA017822.en_US
dc.identifier.citedreferenceCairns, I. H., and K. A. Grubits ( 2001 ), Stochastic growth of ion cyclotron and mirror waves in Earth's magnetosheath, Phys. Rev. E, 64, 056408, doi: 10.1103/PhysRevE.64.056408.en_US
dc.identifier.citedreferenceDelva, M., T. L. Zhang, M. Volwerk, W. Magnes, C. T. Russell, and H. Y. Wei ( 2008 ), First upstream proton cyclotron wave observations at Venus, Geophys. Res. Lett., 35, L03105, doi: 10.1029/2007GL032594.en_US
dc.identifier.citedreferenceDenton, R. E., M. K. Hudson, S. A. Fuselier, and B. J. Anderson ( 1993 ), Electromagnetic ion cyclotron waves in the plasma depletion layer, J. Geophys. Res., 98 ( A8 ), 13,477 – 13,490, doi: 10.1029/93JA00796.en_US
dc.identifier.citedreferenceErdős, G., and A. Balogh ( 1996 ), Statistical properties of mirror mode structures observed by Ulysses in the magnetosheath of Jupiter, J. Geophys. Res., 101 ( A1 ), 1 – 12, doi: 10.1029/95JA02207.en_US
dc.identifier.citedreferenceFairfield, D. H., and K. W. Behannon ( 1976 ), Bow shock and magnetosheath waves at Mercury, J. Geophys. Res., 81 ( 22 ), 3897 – 3906, doi: 10.1029/JA081i022p03897.en_US
dc.identifier.citedreferenceGary, S. P. ( 1992 ), The mirror and ion cyclotron anisotropy instabilities, J. Geophys. Res., 97 ( A6 ), 8519 – 8529, doi: 10.1029/92JA00299.en_US
dc.identifier.citedreferenceGary, S. P. ( 1993 ), Theory of Space Plasma Microinstabilities, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceGary, S. P., M. D. Montgomery, W. C. Feldman, and D. W. Forslund ( 1976 ), Proton temperature anisotropy instabilities in the solar wind, J. Geophys. Res., 81 ( 7 ), 1241 – 1246, doi: 10.1029/JA081i007p01241.en_US
dc.identifier.citedreferenceGary, S. P., S. A. Fuselier, and B. J. Anderson ( 1993 ), Ion anisotropy instabilities in the magnetosheath, J. Geophys. Res., 98 ( A2 ), 1481 – 1488, doi: 10.1029/92JA01844.en_US
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2013 ), Magnetic flux pileup and plasma depletion in Mercury's subsolar magnetosheath, J. Geophys. Res. Space Physics, 118, 7181 – 7199, doi: 10.1002/2013JA019244.en_US
dc.identifier.citedreferenceGlassmeier, K.‐H., A. J. Coates, M. H. Acuña, M. L. Goldstein, A. D. Johnstone, F. M. Neubauer, and H. Rème ( 1989 ), Spectral characteristics of low‐frequency plasma turbulence upstream of comet P/Halley, J. Geophys. Res., 94 ( A1 ), 37 – 48, doi: 10.1029/JA094iA01p00037.en_US
dc.identifier.citedreferenceHellinger, P., and P. Trávníček ( 2005 ), Magnetosheath compression: Role of characteristic compression time, alpha particle abundance, and alpha/proton relative velocity, J. Geophys. Res., 110, A04210, doi: 10.1029/2004JA010687.en_US
dc.identifier.citedreferenceHerčík, D., P. M. Trávníček, J. R. Johnson, E.‐H. Kim, and P. Hellinger ( 2013 ), Mirror mode structures in the asymmetric Hermean magnetosheath: Hybrid simulations, J. Geophys. Res. Space Physics, 118, 405 – 417, doi: 10.1029/2012JA018083.en_US
dc.identifier.citedreferenceHo, G. C., S. M. Krimigis, R. E. Gold, D. N. Baker, B. J. Anderson, H. Korth, J. A. Slavin, R. L. McNutt Jr., R. M. Winslow, and S. C. Solomon ( 2012 ), Spatial distribution and spectral characteristics of energetic electrons in Mercury's magnetosphere, J. Geophys. Res., 117, A00M04, doi: 10.1029/2012JA017983.en_US
dc.identifier.citedreferenceHubert, D., C. Lacombe, C. C. Harvey, M. Moncuquet, C. T. Russell, and M. F. Thomsen ( 1998 ), Nature, properties, and origin of low‐frequency waves from an oblique shock to the inner magnetosheath, J. Geophys. Res., 103 ( A11 ), 26,783 – 26,798, doi: 10.1029/98JA01011.en_US
dc.identifier.citedreferenceKrauss‐Varban, D., and N. Omidi ( 1991 ), Structure of medium Mach number quasi‐parallel shocks: Upstream and downstream waves, J. Geophys. Res., 96 ( A10 ), 17,715 – 17,731, doi: 10.1029/91JA01545.en_US
dc.identifier.citedreferenceLe, G., P. J. Chi, X. Blanco‐Cano, S. Boardsen, J. A. Slavin, and B. J. Anderson ( 2013 ), Upstream ultra‐low frequency waves in Mercury's foreshock region: MESSENGER magnetic field observations, J. Geophys. Res. Space Physics, 118, 2809 – 2823, doi: 10.1002/jgra.50342.en_US
dc.identifier.citedreferenceLiu, Y. C.‐M., M. A. Lee, and H. Kucharek ( 2005 ), A quasilinear theory of ion “thermalization” and wave excitation downstream of Earth's bow shock, J. Geophys. Res., 110, A09101, doi: 10.1029/2005JA011096.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.