Show simple item record

Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: The Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations

dc.contributor.authorShen, X. C.en_US
dc.contributor.authorZong, Q.‐g.en_US
dc.contributor.authorShi, Q. Q.en_US
dc.contributor.authorTian, A. M.en_US
dc.contributor.authorSun, W. J.en_US
dc.contributor.authorWang, Y. F.en_US
dc.contributor.authorZhou, X. Z.en_US
dc.contributor.authorFu, S. Y.en_US
dc.contributor.authorHartinger, M. D.en_US
dc.contributor.authorAngelopoulos, V.en_US
dc.date.accessioned2015-11-12T21:04:34Z
dc.date.available2016-11-01T16:43:14Zen
dc.date.issued2015-09en_US
dc.identifier.citationShen, X. C.; Zong, Q.‐g. ; Shi, Q. Q.; Tian, A. M.; Sun, W. J.; Wang, Y. F.; Zhou, X. Z.; Fu, S. Y.; Hartinger, M. D.; Angelopoulos, V. (2015). "Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: The Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations." Journal of Geophysical Research: Space Physics 120(9): 7179-7190.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/115986
dc.description.abstractUltralow frequency (ULF) waves play an important role in transferring energy by buffeting the magnetosphere with solar wind pressure impulses. The amplitudes of magnetospheric ULF waves, which are induced by solar wind dynamic pressure enhancements or shocks, are thought to damp in one half a wave cycle or an entire wave cycle. We report in situ observations of solar wind dynamic pressure impulse‐induced magnetospheric ULF waves with increasing amplitudes. We found six ULF wave events induced by solar wind dynamic pressure enhancements with slow but clear wave amplitude increase. During three or four wave cycles, the amplitudes of ion velocities and electric field of these waves increased continuously by 1.3–4.4 times. Two significant events were selected to further study the characteristics of these ULF waves. We found that the wave amplitude growth is mainly contributed by the toroidal mode wave. Three possible mechanisms of causing the wave amplitude increase are discussed. First, solar wind dynamic pressure perturbations, which are observed in a duration of 20–30 min, might transfer energy to the magnetospheric ULF waves continually. Second, the wave amplitude increase in the radial electric field may be caused by superposition of two wave modes, a standing wave excited by the solar wind dynamic impulse and a propagating compressional wave directly induced by solar wind oscillations. When superposed, the two wave modes fit observations as does a calculation that superposes electric fields from two wave sources. Third, the normal of the solar wind discontinuity is at an angle to the Sun‐Earth line. Thus, the discontinuity will affect the dayside magnetopause continuously for a long time.Key PointsSix Psw enhancement‐induced ULF waves with increasing amplitudes were observedThe wave amplitude could increase four times in several wave periodsSuperposition of two wave modes could cause the wave amplitude increaseen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherwave amplitude increaseen_US
dc.subject.othermagnetosphereen_US
dc.subject.othersolar wind dynamic pressureen_US
dc.subject.otherwave modes superpositionen_US
dc.subject.otherULF waveen_US
dc.titleMagnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: The Time History of Events and Macroscale Interactions during Substorms (THEMIS) observationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115986/1/jgra52015_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/115986/2/jgra52015.pdf
dc.identifier.doi10.1002/2014JA020913en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSarris, T. E., W. Liu, X. Li, K. Kabin, E. R. Talaat, R. Rankin, V. Angelopoulos, J. Bonnell, and K. H. Glassmeier ( 2010 ), THEMIS observations of the spatial extent and pressure‐pulse excitation of field line resonances, Geophys. Res. Lett., 37, L15104, doi: 10.1029/2010GL044125.en_US
dc.identifier.citedreferenceMende, S. B., S. E. Harris, H. U. Frey, V. Angelopoulos, C. T. Russell, E. Donovan, B. Jackel, M. Greffen, and L. M. Peticolas ( 2009 ), The THEMIS array of ground‐based observatories for the study of auroral substorms, Space Sci. Rev., 141, 357 – 387, doi: 10.1007/s11214‐008‐9380‐x.en_US
dc.identifier.citedreferenceNopper, R. W., W. J. Hughes, C. G. Maclennan, and R. L. McPherron ( 1982 ), Impulse‐excited pulsations during the July 29, 1977, event, J. Geophys. Res., 87, 5911 – 5916, doi: 10.1029/JA087iA08p05911.en_US
dc.identifier.citedreferenceOlson, J. V. ( 1999 ), Pi2 pulsations and substorm onsets: A review, J. Geophys. Res., 104, 17,499 – 17,520, doi: 10.1029/1999JA900086.en_US
dc.identifier.citedreferencePu, Z., and M. G. Kivelson ( 1983 ), Kelvin:Helmholtz instability at the magnetopause: Solution for compressible plasmas, J. Geophys. Res., 88, 841 – 852, doi: 10.1029/JA088iA02p00841.en_US
dc.identifier.citedreferenceRae, I. J., et al. ( 2005 ), Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval, J. Geophys. Res., 110, A12211, doi: 10.1029/2005JA011007.en_US
dc.identifier.citedreferenceRussell, C. T., J. T. Gosling, R. D. Zwickl, and E. J. Smith ( 1983 ), Multiple spacecraft observations of interplanetary shocks: ISEE three‐dimensional plasma measurements, J. Geophys. Res., 88, 9941 – 9947, doi: 10.1029/JA088iA12p09941.en_US
dc.identifier.citedreferenceSakurai, T., Y. Tonegawa, T. Kitagawa, M. Nowada, A. Yamawaki, T. Mukai, S. Kokubun, T. Yamamoto, and K. Tsuruda ( 1999 ), Double‐frequency oscillations of low energy plasma associated with transverse Pc5 pulsations: Geotail satellite observations, Earth Planets Space, 51, 43 – 53.en_US
dc.identifier.citedreferenceSamson, J. C., D. D. Wallis, T. J. Hughes, F. Creutzberg, J. M. Ruohoniemi, and R. A. Greenwald ( 1992 ), Substorm intensifications and field line resonances in the nightside magnetosphere, J. Geophys. Res., 97, 8495 – 8518, doi: 10.1029/91JA03156.en_US
dc.identifier.citedreferenceSamson, J. C., L. L. Cogger, and Q. Pao ( 1996 ), Observations of field line resonances, auroral arcs, and auroral vortex structures, J. Geophys. Res., 101, 17,373 – 17,383, doi: 10.1029/96JA01086.en_US
dc.identifier.citedreferenceSamsonov, A. A., D. G. Sibeck, B. M. Walsh, and N. V. Zolotova ( 2014 ), Sudden impulse observations in the dayside magnetosphere by THEMIS, J. Geophys. Res. Space Physics, 119, 9476 – 9496, doi: 10.1002/2014JA020012.en_US
dc.identifier.citedreferenceSarris, T. E., et al. ( 2009 ), Characterization of ULF pulsations by THEMIS, Geophys. Res. Lett., 36, L04104, doi: 10.1029/2008GL036732.en_US
dc.identifier.citedreferenceLandau, L. ( 1946 ), On the vibrations of the electronic plasma, J. Phys., 10, 25 – 34.en_US
dc.identifier.citedreferenceSarris, T. E., X. Li, W. Liu, E. Argyriadis, A. Boudouridis, and R. Ergun ( 2013 ), Mode number calculations of ULF field‐line resonances using ground magnetometers and THEMIS measurements, J. Geophys. Res. Space Physics, 118, 6986 – 6997, doi: 10.1002/2012JA018307.en_US
dc.identifier.citedreferenceShi, Q. Q., et al. ( 2013 ), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, 284 – 298, doi: 10.1029/2012JA017984.en_US
dc.identifier.citedreferenceShi, Q. Q., et al. ( 2014 ), Solar wind pressure pulse‐driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, 4274 – 4280, doi: 10.1002/2013JA019551.en_US
dc.identifier.citedreferenceShue, J., et al. ( 1998 ), Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17,691 – 17,700, doi: 10.1029/98JA01103.en_US
dc.identifier.citedreferenceSouthwood, D., J. Dungey, and R. Etherington ( 1969 ), Bounce resonant interaction between pulsations and trapped particles, Planet. Space Sci., 17, 349 – 361, doi: 10.1016/0032‐0633(69)90068‐3.en_US
dc.identifier.citedreferenceSouthwood, D. J., and M. G. Kivelson ( 1981 ), Charged particle behavior in low‐frequency geomagnetic pulsations 1. Transverse waves, J. Geophys. Res., 86, 5643 – 5655, doi: 10.1029/JA086iA07p05643.en_US
dc.identifier.citedreferenceSugiura, M., and C. Wilson ( 1964 ), Oscillation of the geomagnetic field lines and associated magnetic perturbations at conjugate points, J. Geophys. Res., 69 ( 7 ), 1211 – 1216.en_US
dc.identifier.citedreferenceTakahashi, K., R. W. McEntire, A. Lui, and T. Potemra ( 1990 ), Ion flux oscillations associated with a radially polarized transverse Pc 5 magnetic pulsation, J. Geophys. Res., 95 ( A4 ), 3717 – 3731, doi: 10.1029/JA095iA04p03717.en_US
dc.identifier.citedreferenceTakahashi, K., et al. ( 2010 ), Multipoint observation of fast mode waves trapped in the dayside plasmasphere, J. Geophys. Res., 115, A12247, doi: 10.1029/2010JA015956.en_US
dc.identifier.citedreferenceTan, L. C. ( 2004 ), Observation of magnetospheric relativistic electrons accelerated by Pc‐5 ULF waves, Geophys. Res. Lett., 31, L14802, doi: 10.1029/2004GL019459.en_US
dc.identifier.citedreferenceTian, A. M., et al. ( 2012 ), Dynamics of long‐period ULF waves in the plasma sheet: Coordinated space and ground observations, J. Geophys. Res., 117, A03211, doi: 10.1029/2011JA016551.en_US
dc.identifier.citedreferenceTurner, D. L., Y. Shprits, M. Hartinger, and V. Angelopoulos ( 2012 ), Explaining sudden losses of outer radiation belt electrons during geomagnetic storms, Nat. Phys., 8, 208 – 212, doi: 10.1038/nphys2185.en_US
dc.identifier.citedreferenceWilken, B., C. K. Goertz, D. N. Baker, P. R. Higbie, and T. A. Fritz ( 1982 ), The SSC on July 29, 1977 and its propagation within the magnetosphere, J. Geophys. Res., 87, 5901 – 5910, doi: 10.1029/JA087iA08p05901.en_US
dc.identifier.citedreferenceZhang, X. Y., Q. Zong, Y. F. Wang, H. Zhang, L. Xie, S. Y. Fu, C. J. Yuan, C. Yue, B. Yang, and Z. Y. Pu ( 2010 ), ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit, J. Geophys. Res., 115, A10221, doi: 10.1029/2009JA015016.en_US
dc.identifier.citedreferenceZong, Q., X. Zhou, X. Li, P. Song, S. Y. Fu, D. N. Baker, Z. Y. Pu, T. A. Fritz, P. Daly, A. Balogh, and H. Réme ( 2007 ), Ultralow frequency modulation of energetic particles in the dayside magnetosphere, Geophys. Res. Lett., 34, L12105, doi: 10.1029/2007GL029915.en_US
dc.identifier.citedreferenceZong, Q., X. Zhou, Y. F. Wang, X. Li, P. Song, D. N. Baker, T. A. Fritz, P. W. Daly, M. Dunlop, and A. Pedersen ( 2009 ), Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt, J. Geophys. Res., 114, A10204, doi: 10.1029/2009JA014393.en_US
dc.identifier.citedreferenceLee, D.‐H., and M. K. Hudson ( 2001 ), Numerical studies on the propagation of sudden impulses in the dipole magnetosphere, J. Geophys. Res., 106, 8435 – 8446, doi: 10.1029/2000JA000271.en_US
dc.identifier.citedreferenceLoto'aniu, T. M., H. J. Singer, C. L. Waters, V. Angelopoulos, I. R. Mann, S. R. Elkington, and J. W. Bonnell ( 2010 ), Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion, J. Geophys. Res., 115, A12245, doi: 10.1029/2010JA015755.en_US
dc.identifier.citedreferenceAngelopoulos, V. ( 2008 ), The THEMIS mission, Space Sci. Rev., 141, 5 – 34, doi: 10.1007/s11214‐008‐9336‐1.en_US
dc.identifier.citedreferenceAuster, H. U., et al. ( 2008 ), The THEMIS fluxgate magnetometer, Space Sci. Rev., 141, 235 – 264, doi: 10.1007/s11214‐008‐9365‐9.en_US
dc.identifier.citedreferenceBaumjohann, W., O. H. Bauer, G. Haerendel, H. Junginger, and E. Amata ( 1983 ), Magnetospheric plasma drifts during a sudden impulse, J. Geophys. Res., 88, 9287 – 9289, doi: 10.1029/JA088iA11p09287.en_US
dc.identifier.citedreferenceBaumjohann, W., H. Junginger, G. Haerendel, and O. H. Bauer ( 1984 ), Resonant Alfvén waves excited by a sudden impulse, J. Geophys. Res., 89 ( A5 ), 2765 – 2769, doi: 10.1029/JA089iA05p02765.en_US
dc.identifier.citedreferenceBonnell, J., F. Mozer, G. Delory, A. Hull, R. Ergun, C. Cully, V. Angelopoulos, and P. Harvey ( 2008 ), The electric field instrument (EFI) for THEMIS, Space Sci. Rev., 141 ( 1‐4 ), 303 – 341.en_US
dc.identifier.citedreferenceCahill, L. J., N. G. Lin, J. H. Waite, M. J. Engebretson, and M. Sugiura ( 1990 ), Toroidal standing waves excited by a storm sudden commencement: DE 1 observations, J. Geophys. Res., 95, 7857 – 7867, doi: 10.1029/JA095iA06p07857.en_US
dc.identifier.citedreferenceChi, P. J., D.‐H. Lee, and C. T. Russell ( 2006 ), Tamao travel time of sudden impulses and its relationship to ionospheric convection vortices, J. Geophys. Res., 111, A08205, doi: 10.1029/2005JA011578.en_US
dc.identifier.citedreferenceClaudepierre, S. G., S. R. Elkington, and M. Wiltberger ( 2008 ), Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause, J. Geophys. Res., 113, A05218, doi: 10.1029/2007JA012890.en_US
dc.identifier.citedreferenceGreenwald, R. A., and A. D. M. Walker ( 1980 ), Energetics of long period resonant hydromagnetic waves, Geophys. Res. Lett., 7, 745 – 748, doi: 10.1029/GL007i010p00745.en_US
dc.identifier.citedreferenceHao, Y. X., et al. ( 2014 ), Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen probes observations in the magnetotail, J. Geophys. Res. Space Physics, 119, 8262 – 8273, doi: 10.1002/2014JA020023.en_US
dc.identifier.citedreferenceHartinger, M., V. Angelopoulos, M. B. Moldwin, K. Glassmeier, and Y. Nishimura ( 2011 ), Global energy transfer during a magnetospheric field line resonance, Geophys. Res. Lett., 38, L12101, doi: 10.1029/2011GL047846.en_US
dc.identifier.citedreferenceHsu, T., and R. L. McPherron ( 2007 ), A statistical study of the relation of Pi 2 and plasma flows in the tail, J. Geophys. Res., 112, A05209, doi: 10.1029/2006JA011782.en_US
dc.identifier.citedreferenceHudson, M. K., R. E. Denton, M. R. Lessard, E. G. Miftakhova, and R. R. Anderson ( 2004 ), A study of Pc‐5 ULF oscillations, Ann. Geophys., 22, 289 – 302, doi: 10.5194/angeo‐22‐289‐2004.en_US
dc.identifier.citedreferenceJacobs, J. A., Y. Kato, S. Matsushita, and V. A. Troitskaya ( 1964 ), Classification of geomagnetic micropulsations, Geophys. J. R. Astron. Soc., 8, 341 – 342, doi: 10.1111/j.1365‐246X.1964.tb06301.x.en_US
dc.identifier.citedreferenceKaufmann, R. L., and D. N. Walker ( 1974 ), Hydromagnetic waves excited during an SSC, J. Geophys. Res., 79, 5187 – 5195, doi: 10.1029/JA079i034p05187.en_US
dc.identifier.citedreferenceKepko, L. ( 2002 ), ULF waves in the solar wind as direct drivers of magnetospheric pulsations, Geophys. Res. Lett., 29, 1197, doi: 10.1029/2001GL014405.en_US
dc.identifier.citedreferenceKepko, L. ( 2003 ), Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations, J. Geophys. Res., 108, 1257, doi: 10.1029/2002JA009676.en_US
dc.identifier.citedreferenceKing, J., and N. Papitashvili ( 2005 ), Solar wind spatial scales in and comparisons of hourly wind and ace plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi: 10.1029/2004JA010649.en_US
dc.identifier.citedreferenceMann, I. R., and A. N. Wright ( 1999 ), Diagnosing the excitation mechanisms of Pc5 magnetospheric flank waveguide modes and FLRs, Geophys. Res. Lett., 26, 2609 – 2612, doi: 10.1029/1999GL900573.en_US
dc.identifier.citedreferenceMcFadden, J. P., C. W. Carlson, D. Larson, M. Ludlam, R. Abiad, B. Elliott, P. Turin, M. Marckwordt, and V. Angelopoulos ( 2008 ), The THEMIS ESA plasma instrument and in‐flight calibration, Space Sci. Rev., 141, 277 – 302, doi: 10.1007/s11214‐008‐9440‐2.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.